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Abstract

A method for automated classification of surface and cloud types usng Moderate-
Resolution Imaging Spectroradiometer (MODIS) radiance measurements has been
developed. The MODIS cloud mask is used to define the training sets. Surface and
cloud type classfication is based on the maximum likelihood (ML) dassfication method.
Initid classfication results define training sets for subsequent iterations. Iterations end
when the number of pixels switching classes becomes smaller than a predetermined
number or when other criteriaare met. The mean vector in the spectral and spatia
domain within adassis used for classidentification and afind 1km+resolution
classfication mask is generated for such field of view inaMODIS granule. This
automeated classfication refines the output of the cloud mask dgorithm, and enables
further gpplications such as clear amospheric profile or cloud parameter retrievals from
MODIS and Atmospheric Infrared Sounder (AIRS) radiance measurements. The
advantages of this method are that the automated surface and cloud type classifications
are independent of radiance or brightness temperature threshold criteria, and that the
interpretation of each classis based on the radiative spectra characteristics of different
classes. This paper describes the ML classfication agorithm and presents daytime
MODIS classfication results. The classification results are compared with the MODIS
cloud mask, visible images, infrared window images, and other observations for an initid

validation.



1. Introduction

MODISisakey ingrument on the Earth Observing System (EQS) for conducting
global change research. It provides globa observations of Earth's land, oceans, and
atmospherein 36 visible (VI1S), near infrared (NIR) and infrared (IR) regions of the
gpectrum from 0.4 to 14.5 mm. MODI S measurements record biological and geophysica
processes on agloba scale every 1 to 2 daysin unprecedented detail.

MODIS cloud classfication has many applications. MODIS atmospheric and
surface parameter retrievas require cloud free measurements (Li et d. 2001a), while
cloud type information such as sngle/multi-layer or highVmediunvlow dloud information
will greetly benefit cdloud parameter retrievals (Frey et d. 1999; Li et al. 2001b) and the
derivation of cloud motion vectors (Velden et d. 1997). Cloud classification can aso
improve the monitoring of degp convective clouds and rainfal estimation from IR cloud
imagery data (Li et d. 1992, 1993). MODIS cloud information can further the
Internationd Satellite Cloud Climatology Program (ISCCP) that was stimulated by
research on severd methods of cloud classfication that have been tested in a systemetic
agorithm intercomparison (Rossow et a. 1985).  In addition, clear/single/multi-layer
cloud information from MODIS measurements within a single Atmospheric Infrared
Sounder (AIRS) footprint (15 km) will greetly enhance the cloud- clearing of partly
cloudy AIRS radiances (Susskind et a. 1998) and therefore improve atmospheric
temperature and moisture profiles through the synergism of MODIS and AIRS radiance

messurements from the Aqua satdllite launched on May 04, 2002. Surface and cloud



type cdassfication and identification are very important for surface, aamospheric and
cloud property retrievas.

Researchers at the Cooperative Ingtitute for Meteorologica Satellite Studies
(CIMSS) of the Univergity of Wisconsin-Madison have developed an agorithm for clear
sky detection from MODIS measurements (Ackerman et a. 1998). The MODIS cloud
mask relies on avariety of threshold tests for clear sky and cloudy determinations. This
reliance on thresholds results in limitations in specia Stuations, such as separaing low
cloudsin the presence of snow. To reduce the dependence on thresholdsin the cloud
mask agorithm, the ML classfication procedure can be used as a supplement to improve
the detection of clear and cloudy skiesin the MODIS imagery.

A number of researchers have addressed cloud classfication from avariety of
perspectives. Imagery dassfication sudiesinclude, but are not limited to, discrimination
of cloud typesin polar regions (Ebert 1987, 1989; Key et d. 1989; Key 1990; Welch et d
et a. 1992) and in tropical scenes (Desbois et a. 1982; Inoue 1987), discrimination of ice
and water clouds (Knottenberg and Raschke 1982), separation of clouds and snow
(Tsonis 1984; Allen et d. 1990; Li and Zhou 1990), detection of fire and smoke (Baum
and Trepte 1999), classfication of ocean clouds (Garand 1988; Tag et d. 2000; Lubin
and Morrow 1998), and clear-sky classfication (Saunders and Kriebd 1998; Vemury et
d. 2001). The classfication methods include avariety of gpproaches such as neurd
networks, maximum likelihood, and fuzzy logic. In generd, classification procedures
can be divided into two types. supervised and unsupervised. The premise of supervised
classfication isthe "training” of a classfier based on known cases of gpecific scenes such

that the classifier, once trained, can be used with confidence on unknown cloud image



samples. Thismethod, dthough straightforward, entails considerable effort in the manud
typing of the training samples (Tag et d. 2000). An unsupervised classification method
dlows the dassfier to determineits own divison of cloud types usng amathemetical
separability of classes based on designated scene or cloud radiative spectral
characteristics. However, good initid classfication is very important for unsupervised
classfication due to insufficient training deta

In this paper, the MODI S cloud mask (Ackerman et a. 1998) information is used
astheinitid classfication for the unsupervised MODI S surface and cloud type
classfication approach. The objectives of this study are to:
(2) Provide an additiona clear/cloud mask that can be used for validation or comparison
with other cloud products from MODIS measurements.
(2) Determine ardligble clear/cloudy index for atmospheric total precipitable water
(TPW) and total column ozone retrieval from MODIS clear sky radiance measurements.
(3) Edtimate cloud types that can greetly benefit cloud-top pressure and effective cloud
amount retrievals with combined MODIS and AIRS messurements.
(4) Generate clear/sangle/multi-layer cloud information within an AIRS footprint for
better AIRS cloud-dearing.

The unique features of this cloud classification sudy are:
(1) The MODI S cloud mask is used to provide a very good initid classification for the
ML classifier.
(2) Unlike the MODI S cloud mask that returns a confidence level of clear ranging from 1
(high) to O (low), the ML classifier provides a binary yes/no answer for each pixe on

clear/cloud discrimination.



(3) Unlike other cloud classfication procedures that rely on spectrd coherencein a
gpatiad areaof N by N pixels (for example, Tag et d. (2000) use 16 by 16 km areas for
AVHRR doud dlassfication), this approach uses 1km single fidld of view featuresin the
classfication; therefore, it returns a 1km high spatiad resolution classification mask.

(4) The agorithms for surface and cloud type identification in the MODI S cloud mask
aredso usd in the ML classfier, thus reducing the error due to manud identification of
each class.

Section 2 provides a description of the classfication agorithm. Section 3 outlines
the agorithms for the scene and cloud classification with MODIS spectral band radiance
measurements. Section 4 presents a summary of MODIS spectra characteristics and
feature sdlection. Section 5 summarizes the physical bassfor the identification of
surface and cloud typesin the ML classfication mask. Section 6 describes the daytime
classfication and initia vaidation usng MODIS measurements. A discussion of issues
affecting classfication results is given in section 7. Section 8 describes the conclusions

and future work.

2. Summary of the MODI S cloud mask algorithm

MODIS measures radiances in bands 1 and 2 at 0.25km spatial resolution, in
bands 3 - 7 a 0.5km resolution, and the remaining 29 bands at 1km resolution (see Table
1 for the MODI S spectral band specification; the numbersin this table are cited from
http://modis.gsfc.nasa.gov/about/specs.html). Radiances from 14 spectral bands (bands 1
and 2, bands 5 and 6, bands 18-21, bands 26 and 27, band 29, bands 31 and 32, band 35)
are used in the MODI'S cloud mask dgorithm (initid classfication) to estimate whether a

given view of the Earth surface is obstructed by clouds or opticdly thick aerosol and



whether a clear scene is affected by cloud shadows (Ackerman et d 1998). The physica
bass for the MODI'S cloud detection isthat clouds are generdly characterized by higher
reflectance and lower brightness temperatures than the underlying Earth surface. The
MODIS cloud mask agorithm determinesif agiven pixd isdear by combining the
results of several spectrd threshold tests. A confidence leve of clear sky for each ground
ingantaneous fidd- of-view (GIFOV) is estimated based on a comparison between
observed radiances and specified thresholds. The cloud mesk agorithm aso uses
background data such as awater/land index.

The MODIS cloud mask (http://modis-atmos.gsfc.nasa.gov/MOD35_L 2/index.html )

provides fifteen classes. Those classes are the primary input for the initid dassficaion

of theiterative ML classfication procedure. Thefifteen classesarelisted in Table 2.
Theinitid surface and cloud types used for the ML classfication procedure varies with
the number of classes one attempts to extract from the MODI S cloud mask (e.g., the two
clear versus cloudy classes would be very different from the fifteen classes extracted
here).

3. ML classification algorithm based on the MODI S cloud mask

Classification or clustering of the radiances and loca gpatia distribution of the
radiances is an important part of data andysis and image segmentation. A group or
cluster refersto a class of data that has a similar appearance (i.e., for MODIS images, it
can be a particular surface type or cloud cover). Basic data clustering does not need any
externd information for its completion.

In genera, the distribution of each class presented in the MODI S image data can

be approximated by a multivariate norma distribution, or locadly normd digtribution (Lee



et d. 1999), and the classification procedure can be performed by the well-known ML or

quadratic classfier (Haertel and Landgrebe 1999)

G(X)=-(X-m)'S*(X-m)- InS|+2InP(w,), (1)
where w, represents a particular class, X an unlabeled vector of apixel spanning the
space of the radiance and spatia distribution of the radiance, m the class mean vector in
that space, S; the class covariance matrix, P(w,) the corresponding a priori probability
for classw,, and G, (X) thediscriminate function associated with class w, ; subscript
isthe index for the i th class. For smplicity, assuming thet the probability P(w,) for
esch class w, isequd, adistance is defined to assgn each pixe to particular class w,

D, (X)=(X- m)' S(X - m)+In|s|. @
Mathematically, the pixel X isassgnedto classw;, if

D, (X)ED;(X) fordlw,; *w,. 3

The clustering dgorithm can be described by the following steps.

(1) Classfy the MODIS measurements using the MODI S cloud mask, and caculate the
mean vector and covariance matrix of each class within the MODI'S cloud mask;

(2) Cdculate the distances between the vector of each pixel and mean vectors of different
classes and assign the pixd to the nearest class,

(3) Update the mean vector and covariance matrix of each class after dl pixels have been
reassigned to the nearest classes,

(4) Repeat steps 2 and 3 until convergence criteriaare met. In this paper, if the sum of

the off-diagona eementsfor each class in the classfication matrix (see the definition of



classfication matrix in section 7) islessthan 6%, theiterationsend. Ingenerd, 6 ~7

iterations are needed for afind ML classfication result.

4. Feature selection for MODI S surface and cloud type classification

There are three types of features (radiances, variances of radiances, and spectra
brightness temperature differences) in the MODIS classfication. All the features are
determined at 1km resolution. More spectra bands are used for suface and cloud type
classfication than used for cloud masking.

(1) Spectral band radiances

Radiances provide the primary spectra information for different scene and cloud
types. MODIS VIS/NIR bands 1-7, bands 17-29, and bands 31-35 are used in the
daytime classfication. Theimagesfor VISNIR bands 1-7 are all mapped into the IR
gpatia resolution of 1km. Heresfter, we use a GIFOV to define the MODIS origind
resolution; for example, for band 1 or 2 one GIFOV has 0.25km resolution, for bands 3 —
7 one GIFOV has 0.5km resolution, and for bands 17 — 36 one GIFOV has 1km
resolution. We use apixe as the 1km average of GIFOVsfor VIS/NIR bands 1-7
images, for bands 17-36 apixd issmply aGIFOV.

VIS/NIR bands 1-7 are known to be sengitive to various types of clouds. ThelR
short-wave bands 20 - 25 have a strong cloud reflective radiance component in addition
to athermd emission during the daytime. The IR mid-wave bands 27-29 can be used
with longwave window bands 31 and 32 to detect clouds through their strong water vapor

absorption effects. The IR long-wave spectra bands 31- 36, sengtive to different layers of



clouds, are used to determine the cloud-top pressure (CTP) and effective cloud amount
(ECA) (Frey et al. 1999; Li et a. 2001b).
(2) Variance images

A variance image is congtructed for each of the VISNIR bands 1- 7 images and
for the IR longwave 6.7nm (band 27), 7.3mm (band 28), and 11mm window (band 31)
images. In the variance images for VISINIR bands 1 — 7, the value attributed to each
1km pixd isthe loca standard deviation (LSD) of GIFOV s within the 1km area (for
example, the standard deviation is computed from 4 by 4 vaues (GIFOVs) for bands 1
and 2, and from 2 by 2 GIFOVsfor bands 3-7). InthelIR 6.7mm, 7.3mm, and 11mm IR
11mm variance images, the vaue attributed to each pixd isthe locd standard deviationin
the 3 by 3 GIFOV neighborhood of the pixel (the standard deviation computed from the
nine vaues centered on the pixel). Variance images for VISNIR bands 1-7 aong with
variance images for IR bands 27, 28 and 31 are used in the ML classfication procedure.

Variance or texture images of AVHRR have been used in detecting surface types
and different types of clouds (Coakley and Bretherton 1982; Seze and Desbois 1987,
Uddstrom and Gray 1996). In the associated IR 11mm window variance image, the
boundaries of different classes, or broken clouds, are well defined by very high variances,
whereasthe variance isfar smdler indde aclass. Cirrus corresponds to areas of high
variances and low gtratiform clouds to areas of low variances. In the associated VIS/NIR
band 1 and band 2 images, edges of different classes ill present large variances,
however, contrary to the IR 11mm window variances, low variancesin VIS/NIR band 1
and band 2 are associated with cirrus clouds and rdatively high variances with low

gratiform clouds. Figure 1 shows the MODI'S 0.86mm image in units of reflectance (%)



(band 2, left pand) and its variance image (right panel) at 1635 UTC on 5 September
2000 over the eastern part of the United States. High variancesin Figure 1 indicate cloud
edges or low clouds. Figure 2 shows the associated IR 11nm window brightness
temperature (K) (Ieft panel) and its variance (right panel) image. High variancesin
Figure 2 indicate mixed clouds or cirrus clouds. The variance range approximately from
0to 10% for VIS/NIR images and 0 to 6K for IR images (from Figures 1 and 2).

(3) Brightness temperature differences

Studies show that brightness temperature (BT) differences between two IR
spectra bands are very useful for detecting clouds (Ackerman et d. 1998). For example,
in the 8nm region, icelwater particle absorption isa a minimum, while atmospheric
water vapor absorption is moderate. In the 11mm region, the opposite istrue; particle
absorption is & a maximum and amospheric water vapor absorption is releively
minimd.

By using bandsin these two regions in tandem, cloud properties can be
distinguished (Inoue 1985; Prabhakara et d. 1993). Large positive BTg s — BT1 vaues
indicate the presence of cirrus clouds, where BTg g definesthe BT of 8.6nm. Thisisdue
to the larger increase in the imaginary index of refraction of ice over that of water. For
clear conditions, the BTg ¢ — BT11 will usudly be negative due to stronger atmospheric
water vapor absorption at 8.6mm than a 11nm. Most clouds appear as positive valuesin
the BTg.¢ — BT11 image

A third band in the 12mm region will enable cloud phase ddinegation (Strabaa et
al. 1994). Water particle absorption increases more between 11mm and 12mm then

between 8.6mm and 11mm, while the increase of ice particle absorption is greater between
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8.6mm and 11mm than between 11nm and 12mm. Thus, the BT11 — BT12 vaues of water
clouds are greater than the BTg s — BT11. Conversdy, BTg g — BT11 vadues of anice doud
scene are greater than coincident BT1; — BT12. Therefore, ice and water clouds will
Separate in a scatter diagram of BTg g — BT11 versus BT11 — BTy, withice douds lying
above the unity dope and water clouds below. Mixed phase or partid radiometer filled
ice over water clouds will exhibit characteristics of both ice and water cloudsin this
format, grouping near the unity dope. Thisinformation is extremdy useful for nighttime
classfication when the visble measurements are not available.

Table 3 ligts three types of featuresin the spectra information (reflectance and
BTs), spatid information (variances), and BT differences used by the ML classification
agorithm.

5. Identification of each classin the ML classification mask

Each classisidentified based on the spectral and spatial radiance characteristics.
In generd, ML classifies most surface and cloud types with the same characterigtics as
the MODI S cloud mask (see Table 2 for theinitid dasses), dthough there might be
ggnificant adjustmentsin pixel assgnments among classes. Some classes may change
their physica characterigtics after the ML classfication procedure; for example:

- Class 2: Clear coast may change to another clear surface; or

- Class 6: Shadow of cloud may change to mixed surface type; or

- Class 9: Cirrus cloud may change to clear surface.

The cloud type in the MODI S cloud mask may aso change after ML
classfication. For example, high cloud in the cloud mask changes to middle-high cloud

when there is asubgtantia error in the MODIS cloud mask procedure. Severd tests are
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applied to the class center values (VIS/NIR bands 1- 7 reflectance; VIS/NIR bands 1-7, IR
bands 27-28 and IR 11mm variances; IR bands 20 — 25 and IR bands 27-35 brightness
temperatures;, aswel as BT differences between two spectra bands) to ensure the
identification. The testsinclude the three following steps.

Thefirst step istheidentification of all clear surfacetypes. Classesl, 2,4 and 7
are clear classes according to the MODI'S cloud mask; however, they will need to pass 2
additional tests discussed below. Class 3 will be tested for desert or low clouds; class 5
will be tested for snow or low clouds; and class 9 will be tested for cloudy or clear. A
classis determined to be clear only if it passes all the clear tests. Severd testsare
described below.
(1) Radiance Threshold and Spectra Brightness Temperature Difference Tests

The clear tests used in the MODI S cloud mask dgorithm are used to check each class

of the ML classficaion. For example, during the daytime the difference BT11-BT3 7
becomes large and negative because there is reflection of solar energy at 3.7mm. This
techniqueis very successful a detecting low level water clouds during the daytime. For
details of the clear test procedures, see Ackerman et d. (1998). Only those classes
passing al the clear tests continue to the variance image tet.
(2) Variance Image Tedts

The empirical interpretation of the variances can be summarized as. a) low
VIS/NIR bands 1-7 variances and low IR 11mm variances correspond to surface or
homogeneous thick clouds; b) relaively low VIS/NIR bands 1- 7 variances, high IR 11mm
variances correspond to cirrus over surface; ) relaively high VIS/NIR bands 1-7

variances, low IR 11nm variances correspond to quas-total coverage by middie-low



clouds; d) high VIS/NIR bands 1-7 and IR 11mm variances, with correlated variations,
correspond to mixed coverage by thick high and middle clouds. Using this interpretation,
IR 11mm variances and VIS/NIR bands 1-7 variances alow the distinction between
partid broken clouds, semitransparent clouds and surfaces that could not be separated in
IR-VIS/NIR images (Seze and Desbois 1987). The combination of spectra (IR 11mm
window and VIS/NIR) and spatia (LSD of VISNIR bands 1-7 and IR 11nm window)
information may alow a better determination of the surface and cloud types. When the
clouds form homogeneous layers, they produce partial coverages of the pixe or present
locd vaidionsin the optica properties.

The second step istheidentification of surface typesfor clear classes. This
reliesmainly on VISNIR bands 1 and 2 reflectance and VIS/NIR bands 1-7 variance
information.

Clear water class: band 2 haslow reflectance, while band 1 has rdatively high
reflectance. Very homogeneousin bands 1-2 and IR 11mm variance images,

Clear land class: low bands 1and 2 reflectance, al'so homogeneous in bands 1 and
2 variance images,

Clear snow or ice class: high bands 1 and 2 reflectance, rdatively low bands 6 and
7 reflectance, very homogeneousin al VIS/NIR bands 1-7 and IR 11mm variance
images;

Desart dass: rdative high reflectance in dl VIS/NIR bands 1-7 images, dlso very
homogeneous in mogt VIS/NIR bands 1-7 images and IR 11rmm window image.

Coadtd class: low bands 1 and 2 reflectance; relatively high variance in bands 1

and 2 variance images, aswdl asin the IR 11mm variance image.
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Thethird step isthe identification of cloud types (for example, low/mid/high
clouds). Theidentification is based on the VIS/NIR bands 1- 2 reflectance and IR 11mm
window brightness temperatures, aswell as the variance imagesin VISNIR bands 1-7
and IR 11mm mentioned above. For example, thick high clouds correspond to high
reflectance, low IR 11mm window brightness temperatures, low VISNIR bands 1-7
variances and low IR 11mm variances. In contrast, the cirrus clouds correspond to
reaively low VIS/NIR bands 1- 7 variances and high IR 11mm variances. InthelR
11nm window image, high clouds are usudly colder than the lower clouds.

6. ML classification with MODI S multi-spectral band measurements

Three cases are presented. Each case contains agranule of MODI S data (2030 by
1354 pixels from a 5-minute sadlite pass).

(1) Casel

MODISNIR band 2 and IR 11mm window images at 1635 UTC 5 September
2000 are presented in figures 1 and 2 (Ieft pandls), respectively. Each classisinitidly
defined by the MODI S cloud mask agorithm (see Table 2 for the initid class index).

The ML classification procedure ends &fter 6 iterations. Thirteen classes are obtained
whose center values are given in Table 4. The identifications given to the classes are
based on the previoudy described andyss:

Classes 1, 2, 3, and 4 correspond to clear surface: the most homogeneous spatialy
in VISNIR bands 1-7 and IR 11mm window, warm in the IR 11mm window and dark in
the VIS/NIR bands 1and 2 images, negative valuesin BTg g — BT11 image and amdl

vauesin BT11 —BT3 7 image.
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Classes 5, 8, and 9 are mid-low clouds (“M.L. Cld” in tables 4-6) or mixed
clouds: high IR 11mm variances with very high variancesin VISNIR bands 1-7, large
negative vauesin BTy, — BT3.7 image.

Class 6 corresponds to a class of mixed surface types (“Mixed” in tables 4-6):
high variancesin IR 11mm and relatively low variancesin VIS/NIR bands 1 — 7, warmiin
IR 11mm window and dark in VIS/NIR bands 1 and 2 images, smal vauesin BT -
BT;7 image

Classes 10 and 12 correspond to middle-high (“M.H. CId’ in tables 4-6): very
bright in VISINIR bands 1 and 2 images, relatively low variancesin VISNIR bands 1-7
and IR 11mm, large negdtive valuesin BT11 — BT3 7 image, rdatively high reflectancein
1.38mm image.

Class 13 corresponds to low clouds: low variances in IR 11nm with warm
brightness temperature, high variancesin VISNIR bands 1 — 7, very bright in VISINIR
bands 1 and 2 images, large negative vauesin BT11 — BT3 7 image.

Class 15 corresponds to high thick clouds (“H. Cld” in tables 4-6): rdaively
homogeneousin IR 11mm window and VIS/NIR bands 1-7, coldest in IR 11rmm window
and brightest in VISNIR bands 1 and 2 images, large negative vauesin BT11 — BTs7
image.

Class 11 isan undecided class or mixed types. small percentage of pixelsin the
image, huge variances in IR bands 27-28 and IR 11nm.

Classes 7 and 14 were not found in this case.

Figure 3a shows the cloud mask (left pand) and classification mask (right pand). Using

15 unique colorsin the display was not deemed practica for interpretation so we have
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combined the classesinto 8 types. In generd, the cloud mask and the classification mask
have smilar cloud/clear separations, however, the ML classfication changes the cloud
types of theinitid classfication obtained from the MODIS cloud mask. In addition,
some water pixelsin the Western Lake Erie, initidly assgned to low clouds by the
MODIS cloud mask dgorithm, are classified as clear water by the ML classfication,
which can be clearly seen from the broad cloud mask and classification mask shown by
Figure 3b. This might be due to the rdatively high VIS/INIR bands 1- 2 reflectance of
clear water pixels over that area, which are not well separated from the low clouds by the
MODIS cloud mask dgorithm. Another possibility isthat the thresholds used in the
cloud mask agorithm are not dynamic and they may not be indicative of the pectra
characteristics over that areain this particular case. If the water scene and low clouds can
be separated by some of those spectral and spatial characteridtics, the ML classification
process should be able to separate them.

Vadidation of cloud classfication is dways difficult (Rossow and Garder 1993).
Two important seps in vaidation are image interpretation and quantitative andyss.
Fgure 4 shows the MODIS composite image from bands 1, 4, and 3 (left panel) and
BTse —BT11 image (right pand). It showsthe cloud pattern depicted in both images of
Figure 4 iswell identified by both the MODI S cloud mask and ML classfication mask in
Figure 3a.
(2) Case2

Asthe cloud mask dgorithm is sometimes less rdliable where snow cover exigts,
classfication of awinter case is demongrated here. Figure 5 shows the band 2 (left

pand) and its variance (right pandl) images for 1640UTC 17 December 2000. In generd,
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cloud and snow appear very smilar in the 0.86rmm (band 2) image, even in the variance
images for VISNIR bands 1 — 7. However, they appear dissmilar in the band 6
(1.64mm) image. Eleven classes are obtained in this case whose class center values are
givenin Table 5. Theidentifications given to the classes are:

Classes 1, 2, 4 and 9 are clear surface: very spatially homogeneousin IR 11mm
window and VISNIR bands 1-7 images, warm in the IR 11mm window and dark in
VIS/NIR bands 1 and 2 images, smdl vauesin BT11 — BT3 7 image.

Class 3islow clouds reatively low variance in IR 11mm window, brighter in the
VIS/NIR bands 1 and 2 images than classes 2 and 9, very high variancesin VISNIR
bands1-7.

Class 5 corresponds to snow: very homogeneousin IR 11nm window and
VIS/NIR bands 6-7 images, bright in VISNIR bands 1 and 2 but rdatively dark in bands
6 - 7images and| vduesin BT11 - BT3z.7 image.

Classes 8 and 13 correspond to mid-high douds or mid-low douds: high
variancesin VIS/NIR bands 1-7 and IR 11mm, bright in VIS/NIR bands 1 and 2 images,
large negative valuesin BT1; — BT3 7 image.

Class 10 corresponds to high thick clouds: rdatively homogeneousin both IR
11rmm window and VIS/NIR bands 1-7 images, very cold in IR 11nm window and very
bright in VIS/NIR bands 1 and 2 images, large negative valuesin BT11 — BT3 7 image.

Class 12 corresponds to mid-low clouds: low variancesin IR 11nm and relative
high variancesin VIS/NIR bands 1 — 7, bright in the VIS/NIR bands 1 and 2 images,

large negative vduesin BT11 — BT3 7 image.
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Class 6 is an undecided class or mixed types. smdl percentage of pixesin the
image, huge variancesin IR bands 27 - 28 and IR 11mm.

Classes 7, 11, 14 and 15 are not found in this case.

Figure 6 shows the associated MODI S cloud mask (left panel) and ML
classfication mask (right pand). In the cloud mask agorithm, snow is not well separated
from the low cloudsin the eastern part of the United States. However, it iswell separated
inthe ML dassfication. Figure 7 showsthe MODIS BT1; — BT3 7 image (left pand) and
1.64nm (band 6) image (right pandl). Usudly, clouds are reveaed by large negative
vauesin BT11 — BT3 7 due to the strong solar reflection of the 3.7mm over the clouds.
However, the solar reflection of 3.7mm over clear surfaces, even over the snow cover, is
usudly smdl. There arelarge negative vaues over the northeast coastd region and over
the Lake Michigan areawhere clouds exist. The band 6 image aso shows the cloud
paitern in this area.

Figure 8 presents the scatter plots of band 2 (pand 1), LSD band 2 (pand 4), band
6 (panel 2), LSD band 6 (pane! 5), BTg 6 — BT11 (panel 3) and BT1; — BT3.7 (panel 6)
versus BTy for the 4 boxes outlined in theright pand of figure 6 (representing snow, low
clouds, dlass of mixed cloud types, and high clouds, respectively from Ieft to right). High
clouds are well separated in panel 1; snow iswell separated by band 6 in pand 2, dl four
objectives are well separated by BT11 - BT3.7 imagein pane 6. Thisfigure illustrates that
there is Significant separation between snow and cloudsin the ML classification
procedure.

Figure 9 shows the snow cover map for 17 December 2000 from the National

Oceanic and Atmospheric Adminigtration (NOAA) (http://www.nohrsc.nws.gov/index.html ).
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This snow chart was created from various sources of data including ground wegther
observations, DM SP microwave products, and other polar and geodtationary satellite
observations. Snow covers most of the northern United States of America; however,
Lake Michigan was shown as open water in this chart, which is consstent with the ML
classfication results.

(3) Case 3

The chdlenge of detecting clouds over desert region is the focus of Case 3.
Figure 10 shows band 2 (left panel) and its variance (right panel) images of an African
Sahdl/desert scene at 0935UTC 05 November 2000, indicating cloudsin the southern part
of the granule. The MODI S cloud mask dgorithm sometimes has difficulties in desert
areas Snce the VIS/NIR bands 1 and 2 reflectance is usudly higher over clear desert than
over other clear vegetated land, and sometimes clear desert is not well separated from
low clouds in the MODIS cloud mask dgorithm. Twelve classes are obtained from the
cloud mask dgorithm and the ML classfication in this case; the class center vaues are
givenin Table 6. Theidentifications given to the classesare:

Clases 1, 4 and 9 are clear surface: homogeneous in IR 11nm window, dark in
VIS/NIR bands 1 and 2 images and warm in IR 11mm window image, smdl vduesin
BT11 —BTs.7 image

Clases 2 and 3 are clear desart surface: very spatialy homogeneousin IR 11mm

window and VIS/NIR bands 1-7 images, very warm in IR 11mm window and relatively

bright in most VIS/NIR bands 1-7 images, smd| vauesin BT, — BT3 7 image.
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Class 8 corresponds to mid-low clouds: relatively bright in the VISNIR bands 1
and 2 images, low variancesin VIS/NIR bands 1 — 7 and very high variancesin IR 11nm,
large negative vauesin BT11 — BT3 7 image.

Class 10 corresponds to high clouds: brightest in VISNIR bands 1 and 2 images,
coldest in IR 11nmm window image, very homogeneous in VISNIR bands 1- 7 images and
relative high variances in IR 11mm, large negetive valuesin BT11 — BT3 7 image.

Classes 11 and 12 correspond to mid-low clouds or mid-high douds bright in
VISNIR bands 1 and 2 images, high variancesin VISNIR bands 1 — 7 and IR 11nm,
large negative valuesin BT1; — BT3 7 image.

Classes 13 and 15 correspond to mid-low clouds: bright in VISNIR bands 1 and 2
images, very high variancesin VISNIR bands 1 — 7 and rdeive high variancesin IR
11mm, large negative vauesin BT11 — BT3 7 image.

Classes 5, 7 and 14 are not found in this case.

Figure 11 shows the MODI S cloud mask (left panel) and ML classification mask
(right pand) for thiscase. Inthe MODIS cloud mask agorithm, a drought lake was mis-
identified (classfied as clouds) but it is recognized by the ML dassfication (classfied as
water classin theright pand of Figure 11). Some striped lines existed in the cloud mask
due to the use of band 36 in the cloud mask agorithm; band 36 was not used in the ML
classfication. The cloud coverage from the cloud mask is very close to that of the ML
classification results dthough there are sgnificant cloud type changes (eg., less high
cloudsin the ML classfication than in the MODIS cloud mask). Also, the MODIS cloud

mask has more clear desart areathan the ML classification.
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Figure 12 showsthe MODIS BTg s — BT11 image (left pand) and 11mm imege
(right panel). Clouds indicate postive vauesin the BTg s — BT11 image; large negative
vauesinthe BTg s — BT11 image here should correspond to desert since the surface
emissvity hasthe potentid to be sgnificantly lower a 8.6mm than a 11nm in desert
regions (Sdisbury and D’ Aria 1992).

Theinitid classfication results from the cloud mask may be sendtive to the
thresholds in some regions, especialy where desert exigts. In order to test the sensitivity
of both the MODI S cloud mask and ML classification agorithms to the thresholds used
in the MODI S cloud mask, the thresholds were changed in the MODI S cloud mask
dgorithm. Some arid and semi-arid zones were purposefully misidentified as vegetated
land, where visible band thresholds are lowered. The MODIS cloud mask then
misinterpreted the brighter than expected surface reflectances as clouds.  Figure 13 isthe
MODIS cloud mask (left pand) with dtered (incorrect) thresholds and its corresponding
ML dlassfication mask (right pandl). In the cloud mask agorithm, many desert pixels
are mistaken for lower clouds due to ingppropriate thresholds, however, those low cloud
pixels are correctly reclassfied as desert after the ML classfication. Although there are
some differences for the desert/land separation between the two classifications (see
figures 11 and 13), the clear/cloud separation is dmost the same in both classfications.
This offers some reassurance that the ML classfication procedure is rddivey insendtive

to the thresholds used in the MODI S cloud mask dgorithm.

7. Discussion
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Classification accuracy, computation efficiency, and separability of each classare
very important cong derations when gpplying this technique in the MODIS red time data
processing.

Classfication accuracy isimportant; and severa sources of errors should be
addressed. Firgt, a specific type of scene or cloud may not be classified or separated; this
usudly happens when the class gppears very close to another classin the MODIS vishble
and infrared imagery. For example, snow sometimes appears very smilar to low clouds
and is difficult to separate; it may smply be misclassfied aslow clouds. Second, pixels
at the boundaries between two different classes may be assigned to the wrong class.
When pixds are close to two classes, those pixels are difficult to assgn. Third, some
classes may beincorrectly identified; this happens to some low cloud types. In generd,
clear scenes can be identified with considerable confidence since they are warmer in the
IR window band, have lower reflectance in the visible bands, and are more homogeneous
inthe LSD images. Some ML classfication errors can be reduced by using a more
accurate initial classfication or usng morea priori knowledge. A better initia
classfication requires less adjustment for each classin the iterations and reduces the
number of iterations, therefore producing more rdligble find classfication results.
However, apoor initid classification requires more adjustments for each class and more
iterations, therefore producing a classification result that might not be stable. In addition,
ingrument noise and calibration errors may affect the cloud mask agorithm, and thus the
classfication results. Accurate cdibration is necessary to avoid errorsin the cloud mask
snce the cloud mask dgorithm uses a variety of thresholds. Mathematicdly, the iterative

classfication procedure is convergent; however, the convergence speed and stability are



very dependent on initid classfication, separability of different classes, seection of
features, and definition of distances used to separate classesin the classification
agorithm.

Compuitation efficiency isimportant for red time data processing, as with MODIS
data from a direct broadcast stations. The ML classification procedure for aMODIS
granule takes severd minutes on an SGI Origin 2000 computer or a Sun Unix
workgation. More iterations require more computation time, with the iteration number
depending on theinitid classfication. A coarseinitid classfication, for example, a
amplevisble and infrared box classfication (Li and Zhou 1990), will need more
iterations. A better initia classification, for example, one based on the cloud mask in this
paper, needs fewer iterations for convergence. Determination of the iteration
convergence is based on a classification matrix C(i, j) that indicates the percentage of
pixesof the i th class of the lagt iteration assigned to the | th class after the current
iteration. Figure 14 shows the classfication matrix of the first iteration (14a), the third
iteration (14b) and the sixth iteration (14c) of case 1. It can be seen from Figure 14 that
there are Sgnificant changes from the firdt iteration to the third iteration, but the matrix
tends to the diagond after the sixth iteration indicating convergence in the classification
procedure. Usudly, 6 iterations produce stable classification results.

Separability is very important in the classfication. In generd, if two classes are
separated by a spectra band or a spatia characteristic, they are separable in the
classfication. Figure 8 demongtrates that severd classes have different spectral or spatia
characteristics. In order to further andyze the separability of two different classes, the

distance between each class and its neighbor class (a neighbor classis defined asits
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nearest classin terms of distance) is calculated. The distance between two classes w; and

w; isdefined by

D(m,m)=(m- mj)TS'l(m'mj), (4)
where & isthe covariance matrix for dl pixels. The uncertainty in the distance, or

maximum noise distance, can be estimated by Eq.(3) as
dD(m,m) £4hT & (m- m)|, ©)
where h isthe noise vector for each feature used in the ML classfication. Figure 15

shows the distance between each class and its neighbor class, as well asthe maximum
noise distance based on the classfication for case 1. In Figure 15, for example, C2-C4
means that class 4 isthe neighbor of class2. From Figure 15, most classes are well
separated, but classes 2 and 4 are very close and thus not well separated (both class 2 and
4 are clear land in thisexample). In generd, most classes from the classfication
procedure should be separable from each other. All classes should be separable since the
dassdigances are dl larger than the maximum noise distances. Note that the distance
between a cloud class and its nearest clear neighbor class can also be used asa
confidence leve for this cloud dassin ML dlassfication. For example, if alow
dratiform classis close to its nearest clear neighbor class, say snow class, then alow
confidence level should be assigned to this cloud class.

Use of the variance images will improve the accuracy of ML classfication.
Figure 16 isamilar to Figure 6 but the ML dlassification mask in the right pane does not
use VIS/NIR bands 1-7, IR bands 27-18 and IR band 31 variance images. More clouds

are detected by ML classfication in Figure 16 in southern Florida compared to the
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classfication mask in Figure 6 that indludes dl variance images. This might be due to
the smilar gppearance of clouds and surface in that area in both VIS/NIR bands 1-2 and
IR 11nmm window images, but they should have sgnificantly different gppearancesin
some of the variance images. In addition, some clear land pixelsin southern FHorida are
classified as mixed surface type by ML classfication without variance images, indicating
that variance images play an important role in identifying some surface types. The
classfication matrix was computed to indicate the percentage of pixelsin the i th class of
ML classfication with variance images assgned to the j th class of ML dassfication
without variance images. It showsthat class 5 of snow has dmost no change, indicating
that the snow detection is less sengtive to the variance images. Some pixels of class4
(clear land) in the ML dassfication with LSD have changed to class 6 (mixed surface
types) in the ML classfication without LSD (see table 5 for the 11 classes).

The sze of theimage can dso influence the classfication results. Currently a
granule of MODI S data (2030 by 1354 pixels) is used for a scene classfication. On one
hand, if the Sze of the image istoo smdl, there might be fewer classes contained in the
data and the separability might be low since there is no spatid variation in the imagery.
On the other hand, if the Size of the image istoo large, there may be too many spatiad
vaiationsin theimagery and too many classes so that different classes may show smilar
spectra or textura characteristics. A proper Size is needed to allow enough scene
variation but to avoid classfying different classes as one.

ThisML dassfication procedure is pursued to extract the maximum information
from MODIS measurements, to reduce the need for auxiliary data, and to have a better

understanding of the dear sky and cloud varigbility. If auxiliary datais not available or
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in certain Stuations (such as in the presence of snow) the cloud mask may not be of good
qudity, asmple visible-infrared box classification can be used for initid classfication

(Li and Zhou 1990). Als, if the previous near time classfication center vaues were
stored astraining or reference data, these center values could aso be used for initia
classfication based on the Bayesian decison method (Li et d. 1992).

8. Conclusion and future work

A ML dassfication initidized from the MODIS cloud mask agorithm was used
to classfy the scenes and clouds. The VIS/NIR and IR 1km resolution spectral
information and VIS/NIR/IR spatid information are used in the classfication. Theam
of this paper isto demondrate the ussfulness of multi-band spectral and spatia imagery
information in identifying clear and cloudy scene types, and to find an effective way to
improve the MODIS cloud mask when the thresholds used in cloud mask agorithm are
not representative. Results of gpplying reflectance, BT, locd variances, and BT
differences between two IR spectral bands confirm the usefulness of these parameters for
cloud/clear separation, as well as for separating between the cloud types or clear types.
The 1km resolution ML classification mask improves the 1km resolution MODIS cloud
mask in some Stuations. Combined use of the MODI S cloud mask and ML cloud
classification improves identification of clear skiesin the MODIS imagery aswell as
cloud types.

Future work includes more case studies, especialy in polar regions and African
deserts where the surfaces may have avery unique appearance in the MODI S imagery.
The utility of prior dlassfication resultsas an initid classfication will be sudied; for

example, daytime dlassfication results can be used asthe initid classfication for
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nighttime classfication snce the doud mask islessreliable a night. In addition, the
impact of using classification in amaospheric profile and cloud retrievas will be studied.
The size for image processing and its effect on cloud classification will dso be
investigated. Globd dassifications will aso be investigated and the maximum number
of cloud classes will be explored.
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Figure captions

Figure 1, The MODI S 0.86rmm (band, left panel) and its LSD (right panel) images of
MODIS a 1635 UTC on 5 September 2000 showing the clouds over the eastern
part of the United States.

Figure 2, The MODI S 11nmm (band 31) brightness temperature image (lft pand) and
its LSD (right pand) image at 1635 UTC on 5 September 2000 over the eastern
part of the United States.

Figure 3a, The MODIS cloud mask (left pand) and ML cdlassification mask (right pand)
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at 1635 UTC on 5 September 2000 indicating that classes of clear water, clear
land, mixed types, mid-low clouds, mid-high douds, high clouds classfied by the
MODIS cloud mask and ML classfication dgorithms.

Figure 3b, Broad image of Figure 3awhich shows the benefit of the ML classficaionin
the vicinity of the coagtline (see arrows).

Figure 4, The MODIS composite true color image from bands 1, 4, and 3 (Ieft pand) and
BTss — BT11 image (right panel) a the 1635UTC on 5 September 2000.

Figure 5, The MODI S band 2 image (left pand) and its variance image (right
panel) at 1640UTC on 17 December 2000.

Figure 6, The MODIS cloud mask (left pand) and ML classfication mask (right pandl)
at 1640UTC on 17 December 2000.

Figure 7, The MODIS BT11 — BT3 7 (l€eft panel) and MODI S band 6 image (right pandl) &
1645 UTC on 17 December 2000.

Figure 8, The scatter plots of band 2 (pand 1), LSD band 2 (pand 4), band 6 (pand 2),
LSD band 6 (pand 5), BTgs —BT11 (pane 3) and BT11 — BT3 7 (panel 6) versus|IR
11nm window brightness temperature for the 4 boxes outlined in the right pane
of figure 6 (represent snow, low clouds, class of mixed cloud types, high clouds,
from |eft to right, respectively).

Figure 9, NOAA’s snow and ice chart on 17 December 2000.

Figure 10, The MODI S band 2 image (left panel) and its variance image (right pandl) at
0935UTC on 05 November 2000.

Figure 11, The MODIS cloud mask (left panel) and ML classification mask (right panel)

at 0935UTC on 05 November 2000.
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Figure 12, The MODIS BTg s — BT11 image (left pand) and 11mm image (right pand)
at 0935UTC on 05 November 2000.

Figure 13, The MODIS cloud mask (left panel) with aternate (incorrect) thresholds and
its corresponding ML classification mask (right pandl) at 0935UTC on 05
November 2000. Thisfigureis part of the sengtivity study.

Figure 14, The MODIS ML classfication matrix of the first iteration (144), the third
iteration (14b) and the sixth iteration (14c) of case 1 (1635UTC on 05 September
2000).

Figure 15, The distance between each class and its neighbor class, dong with the
maximum noise distance based on the classification for case 1 (1635UTC on 05
September 2000).

Figure 16, The MODI S cloud mask (left pandl) and ML classification mask (right
pand) without variance images for case 2 (1640UTC on 17 December 2000).
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Table 4, Class center values of thirteen classes at 1635UTC 5 September 2000 (Casel).
The unitsare K for IR bands and reflectance (%) for VISNIR bands.

Table 5, Class center values of eleven classes at 1640UTC 17 December 2000 (Case 2).

Table 6, Class center vaues of twelve classes at 0935UTC 05 November 05, 2000 (Case
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Table 1: MODIS Spectral Band Specifications

Primary use Band Bandwith' Spectrd radiance? Required SNR®
L and/Cloud/Aerosols Boundary 1 620-670 21.8 128

2 841-876 24.7 201
L and/Cloud/Aerosols Properties 3 459-479 353 243

4 545-565 29.0 228

5 1230-1250 54 74

6 1628-1652 7.3 275

7 2105-2155 10 110
Ocean Color/Phytoplankton/Biogeochemistry 8 405-420 44.9 880

9 438-448 419 838

10 483-493 321 802

11 526-536 27.9 754

12 546-556 210 750

13 662-672 95 910

14 673-683 8.7 1087

15 743-753 10.2 586

16 862-877 6.2 516
IAtmospheric Water Vapor 17 890-920 10.0 167

18 931-941 3.6 57

19 915-965 15.0 250
Primaryuse | Bad |  Baawith | Spectra radianc® | Recuired NEDT? (K) |
Surface Temperature 20 3.660-3.840 0.45 (300K) 0.05

21 3.929-3.989 2.38(335K) 2.00

22 3.929-3.989 0.67 (300K) 0.07

23 4.020-4.080 0.79 (300K) 0.07
Temperature profile 24 4.433-4.498 0.17 (250K) 0.25

25 4.482-4.549 0.59 (275K) 0.25
Cirrus Clouds/water vapor 26 1.360-1.390 6.00 150 (SNR)




Primary use Band Bandwith' Spectrd radiance? Required SNR®
27 6.535-6.895 1.16 (240K) 0.25
28 7.175-7.475 2.18 (250K) 0.25
29 8.400-8.700 9.58 (300K) 0.05
Ozone 30 9.580-9.880 3.69 (250K) 0.25
Surface Temperature 31 10.780-11.280 9.55 (300K) 0.05
32 11.770-12.270 8.94 (300K) 0.05
Temperature profile 33 13.185-13.485 4.52 (260K) 0.25
34 13.485-13.785 3.76 (250K) 0.25
35 13.785-14.085 3.11 (240K) 0.25
36 14.085-14.385 2.08 (220K) 0.35

1 Bands 1 to 19 are in nm, and bands 20 to 36 are in mm;

2 Spectral Radiance values are (W m2srinm?); 3SNR =

Signd-to-noiseratio; 4 NEDT = Noise-equivalent temperature difference




Table 2: Initid dasses from MODIS cloud mask agorithm

ClassIndex |Content
1 Confident clear water
2 Confident clear coastdl
3 Confident clear desert or semi-arid ecosystems
4 Confident clear land
5 Confident clear snow or ice
6 Shadow of cloud or other clear
7 Other confident clear
8 Cirrus detected by solar bands
9 Cirrus detected by infrared bands
10 High clouds detected by CO- bands
11 High clouds detected by 6.7 micron band
12 High clouds detected by 1.38 micron band
13 High clouds detected by 3.7 micron and 12 micron bands
14 Other clouds or possible clouds
15 Undecided




Table 3: Features used in ML dassification dgorithm

Features Unit Used in Cloud Mask Primary Use
BAND1 % Y Clouds, shadow
BAND2 % Y Low clouds
BAND3 % N
BAND4 % N Snow
BANDS5 % Y Snow
BAND6 % Y Snow, shadow
BAND7 % N
LSD-BAND1 % N Cirrus, low clouds, surface
LSD-BAND2 % N Cirrus, low clouds, surface
LSD-BAND3 % N
LSD-BAND4 % N
LSD-BAND5 % N Clouds, snow, surface
LSD-BAND6 % N Clouds, snow, surface
LSD-BAND7 % N
BAND17 % N
BAND18 % Y Low clouds
BAND19 % Y Shadow
BAND20 K Y Shadow
BAND21 K Y
BAND22 K N
BAND23 K N
BAND24 K N
BAND25 K N
BAND26 % Y
BAND27 K Y
LSD-BAND27 K N
BAND28 K N
LSD-BAND28 K N
BAND29 K Y
BAND31 K Y Clouds, surface
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LSD-BAND31 K

BAND32 K Clouds, surface
BAND33 K

BAND34 K

BAND35 K High clouds
BT11-BT12 K

BT8.6-BT11 K Clouds
BT11-BT6.7 K Clouds
BT3.9-BT3.7 K

BT11-BT3.7 K Clouds
BT12-BT4 K

BT13.7-BT14 K

BT11-BT3.9 K




Table 4, Class center values of thirteen classes at 1635UTC 5 September 2000 (Casel).

The unitsare K for IR bands and reflectance (%) for VISNIR bands.

Features | Water Land Land Land| M.L. Cld[ Mixed| M.LCld[ M.L. Cld MC|I_(|:I Und.| MH.Cld| M.L.Cld| H.CId
Percentage 9.99| 15.23 7.67 18.00 4.00 3.37 4.79 8.16 6.90 0.20 5.30| 13.37 2.96
Class Index 1 2 3 4 5 6 8 9 10 11 12 13 15

BAND1 3.08 4.25 9.85 5.16 2251 8.23 29.80 17.60 60.32 30.37 55.55 58.43 72.77
BAND2 1.74 21.43 26.68 26.75 26.27 9.40 40.10 31.13 63.15 32.38 59.14 63.91 73.44
BAND3 9.91 8.74 15.72 8.76 28.03 14.90 33.73 21.89 64.54 36.51 59.68 61.49 76.32
BAND4 5.29 6.53 12.37 7.35 23.95 10.12 31.45 19.31 60.40 31.83 55.87 58.68 72.22
BANDS 1.35 21.11 28.93 27.00 24.40 8.82 37.88 30.87 48.54 27.41 48.98 53.99 53.50
BANDG6 0.92 11.68 19.69 16.55 16.07 6.66 31.23 23.53 19.60 15.18 31.06 48.63 20.98
BAND7 0.56 4.40 8.76 6.87 9.64 413 20.11 14.45 9.82 8.51 17.89 30.36 11.16
LSD-BAND1 0.28 0.59 1.40 0.86 2.40 1.98 11.70 591 0.87 2.88 1.61 3.25 1.19
LSD-BAND2 0.40 3.16 2.03 2.90 2.61 2.53 11.33 6.19 0.97 3.26 1.80 3.68 2.19
LSD-BAND3 0.16 0.25 0.64 0.30 1.81 1.27 8.63 3.61 0.75 2.19 1.23 2.09 1.05
LSD-BAND4 0.18 0.37 0.74 0.45 1.91 1.39 9.42 3.97 0.76 2.30 1.28 2.28 1.03
LSD-BAND5 0.27 1.87 1.58 1.30 1.89 1.77 8.28 4.04 0.96 2.34 1.71 3.60 1.78
LSD-BANDG6 0.24 1.18 1.94 1.08 1.34 1.58 8.03 4.29 0.50 1.46 1.09 1.93 0.52
LSD-BAND7 0.21 0.65 1.44 0.84 0.95 1.21 6.26 3.73 0.37 0.96 0.87 1.47 0.36

BAND17 1.16 18.39 18.69 23.12 22.28 6.85 31.90 24.35 51.70 25.53 46.57 47.26 55.36

BAND18 0.65 8.77 451 11.15 14.59 3.20 14.57 10.00 39.92 22.76 29.51 18.00 60.16

BAND19 0.80 12.29 8.88 15.54 17.22 4.36 20.58 14.88 45.27 24.09 36.29 27.98 61.08

BAND20| 292.53| 290.62| 306.35| 296.64| 285.05| 296.69| 305.49| 303.34| 264.35| 281.89| 284.76| 307.03| 262.01

BAND21| 291.46| 288.49( 304.43| 294.16| 277.43| 293.82| 296.32 296.04( 250.19| 273.40| 272.31| 295.60| 241.86

BAND22| 291.67| 288.67| 304.94| 294.53| 277.77( 294.23| 296.96 296.61( 250.20( 272.92| 272.44| 296.35| 241.11

BAND23| 288.69| 285.45( 300.60| 290.47| 273.32| 290.18| 290.96( 291.23( 246.92| 268.46| 267.30| 289.44| 236.43

BAND24| 250.30| 248.45| 254.43| 253.36| 240.85( 249.76( 252.12 251.52( 232.05( 238.31| 239.69| 251.82| 225.01
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BAND25| 268.99| 266.13| 275.70| 271.40| 252.88| 268.05| 268.21| 268.80| 234.37| 247.83| 247.18| 266.57| 221.48
BAND26 0.21 0.62 0.60 0.73 6.52 1.07 171 1.13 15.38 11.91 7.93 192 3188
BAND27| 244.66| 245.72| 246.48| 250.15| 233.63| 239.79| 247.14| 246.29| 230.05| 233.47| 233.88| 245.47| 223.87
LSD- 0.64 0.61 0.68 0.53 142 0.98 0.58 0.61 0.97 10.01 0.83 0.61 1.27
BAND27
BAND28| 260.11| 260.57| 260.85| 265.14| 244.21| 254.42| 261.11| 260.79| 234.93| 241.48| 243.05| 260.27| 225.14
LSD- 0.43 0.41 0.57 0.35 2.47 1.27 0.52 0.50 1.25 12.94 117 0.48 1.36
BAND28
BAND29| 286.79| 284.97| 294.43| 289.04| 261.52| 283.71| 282.24| 284.31| 239.67| 258.13| 253.05| 278.45| 226.89
BAND31| 289.98| 286.93| 296.85| 291.65| 259.85| 285.05| 284.08| 286.21| 237.94| 257.39| 252.10| 280.81| 224.62
LSD- 0.40 0.74 0.98 0.78 5.12 3.01 2.48 1.97 181 2421 217 0.90 1.57
BAND31
BAND32| 288.47| 286.59| 294.74| 291.41| 257.77| 283.12| 283.01| 284.98| 237.32| 256.19| 251.01| 280.33| 224.28
BAND33| 266.05| 265.00| 268.91| 270.13| 245.71| 261.88| 265.83| 265.74| 233.77| 243.66| 243.97| 264.96| 223.19
BAND34| 253.63| 252.75| 256.26| 256.62| 239.17| 250.94| 255.47| 254.79| 231.01| 237.46| 239.16| 255.20| 222.17
BAND35| 245.68| 245.14| 247.98| 248.17| 234.84| 243.70| 247.74| 247.05| 228.76| 233.37| 235.16| 247.50| 221.60
BT11-12 1.09 0.33 2.01 0.27 2.08 1.87 1.10 117 0.65 1.20 1.10 0.48 0.39
BT8.6-11 -2.60 -2.30 -2.36 -2.16 161 -1.31 -1.81 -1.91 1.75 0.65 0.96 -1.87 2.32
BT11-6.7| 44.93| 41.10| 50.06 41.44( 26.22( 4453 37.77| 39.89 8.10| 23.66 18.29 35.24 0.80
BT3.9-3.7 -0.94 -2.20 -1.65 -2.24 -7.40 -2.85 -7.64 -6.61| -14.03 -9.24| -12.33| -10.81| -20.81
BT11-3.7 -3.17 -4.11| -10.01 -4.62( -25.22( -12.58( -19.58| -16.93| -26.32| -24.38| -32.64| -26.28| -37.19
BT12-4 -0.12 1.19 -5.92 0.62 -15.42 -7.41 -7.38 -6.14 -9.65| -11.84| -16.28 -9.04| -12.13
BT13.7-14 7.88 7.61 8.27 8.41 4.34 7.19 7.76 7.76 2.27 4.07 4.00 7.66 0.59
BT11-3.9 -2.23 -1.91 -8.35 -2.38| -17.82 -9.73| -11.94| -10.31| -12.28| -15.14| -20.31| -15.47| -16.38




Table 5, Class centers values of deven classes at 1640UTC 17 December 2000 (Case 2).

Features| Water Land [ M.L. Cld Land| Snow Und.| MH.Cld Land H.Cld [ M.L. Cld MC|I_11
Percentage| 21.46 3.80 4.14 11.53 15.12 0.21 5.92 11.30 5.57 14.15 6.77
Class Index 1 2 3 4 5 6 8 9 10 12 13

BAND1 3.01 9.71 11.22 4.36 22.86 15.99 25.85 5.20 37.60 27.18 20.13
BAND2 1.69| 12.26| 12.42 11.07| 25.13| 1599 28.82| 11.09| 39.45| 29.90| 23.09
BAND3 8.47 13.09 15.57 7.15 25.72 20.13 28.42 8.58 40.44 29.67 22.83
BAND4 4.93 10.28 12.38 5.22 22.82 16.60 26.04 6.07 37.08 26.89 20.19
BAND5 1.09 11.16 12.54 13.80 16.74 13.33 27.54 13.16 33.92 27.03 21.74
BAND6 0.93 7.36|] 11.30| 10.50 7.39 8.69[ 22.06 9.54| 1885 21.37| 16.19
BAND7 0.68 4.49 8.02 5.54 3.97 5.72 14.87 5.10 12.21 15.32 11.39
LSD-BAND1 0.17 2.15 3.99 0.66 2.03 2.27 7.66 0.63 1.06 1.82 3.34
LSD-BAND2 0.20 2.82 4.67 1.12 2.05 2.52 8.64 1.07 1.16 2.11 3.86
LSD-BAND3 0.10 1.25 2.38 0.20 1.16 1.64 5.30 0.20 0.85 1.04 2.20
LSD-BAND4 0.12 1.41 2.67 0.30 1.30 1.73 5.88 0.28 0.86 1.15 2.39
LSD-BANDS5 0.16 1.92 3.25 0.98 0.90 1.85 6.37 0.82 1.09 1.45 2.93
LSD-BANDG6 0.15 1.53 3.26 1.28 0.55 1.41 5.82 0.87 0.62 1.37 291
LSD-BAND7 0.13 1.14 2.59 0.95 0.42 0.99 4.26 0.60 0.52 1.14 2.40

BAND17 1.24 10.36 9.64 10.34 21.16 12.86 2551 10.22 38.01 26.31 20.64

BAND18 0.62 5.88 4.32 6.16 12.01 9.40 15.37 5.97 34.86 16.07 13.11

BAND19 0.81 7.59 6.14 7.85 15.43 10.58 19.21 7.69 36.20 20.03 16.06

BAND20| 294.79| 279.93| 298.61| 286.72| 266.25( 284.60( 294.43| 279.06| 267.89| 292.38| 288.51

BAND21| 293.22| 275.87| 293.33| 285.07| 262.92| 280.10| 283.99| 276.80| 253.43( 279.36( 277.06

BAND22| 293.27| 274.70| 293.27| 284.16| 261.05( 278.52( 283.19| 276.17| 246.69| 278.18| 275.98

BAND23| 288.94| 270.92| 288.02| 280.91| 258.70| 274.84| 276.14| 272.79| 240.10( 269.83( 268.70

BAND24| 252.12| 243.25| 248.40| 249.37| 239.04( 242.95( 243.99| 244.75| 224.47| 240.62| 240.48

BAND25( 270.33| 256.17| 266.52| 265.24| 248.20| 256.94| 256.42| 258.51| 222.66( 249.97( 250.04

BAND26 0.07 0.66 0.50 0.54 1.30 4.83 1.92 0.47 22.65 1.98 2.57

BAND27| 253.48| 245.07| 248.62| 252.59| 239.79| 244.29| 248.18| 246.79| 220.95| 243.78| 243.06

41




LSD- 0.37 0.42 0.44 0.30 0.34 9.29 0.35 0.32 0.82 0.30 0.40
BAND27
BAND28| 267.26| 255.15| 262.43( 264.27| 249.61( 254.57( 257.28 258.01( 223.00( 251.71( 250.56
LSD- 0.30 0.64 0.43 0.23 0.30 11.80 0.46 0.19 0.87 0.24 0.70
BAND28
BAND29| 288.10| 268.60| 283.55( 279.92 256.63( 270.14 267.63( 271.89( 225.22( 258.10( 258.43
BAND31| 291.66| 269.30| 285.64( 281.47( 256.63( 270.36( 268.89 273.16( 222.58( 259.26( 258.24
LSD- 0.26 212 1.69 0.57 0.59 18.32 181 0.50 1.14 0.52 1.95
BAND31
BAND32| 290.79| 268.78| 284.57( 281.45( 256.28( 269.06 268.41( 273.29( 221.76( 259.17( 257.28
BAND33| 269.13| 255.56| 264.32( 265.01 248.85( 254.16 256.23 258.84( 219.66( 250.64( 248.89
BAND34| 254.98| 246.68| 252.01( 253.61| 242.65( 244.51( 247.62( 249.01( 218.52( 244.07( 242.80
BAND35| 246.68| 240.46| 243.88( 245.79( 237.71( 238.38 241.17( 241.96( 218.33( 239.26( 237.86
BT11-12 0.77 0.48 1.01 -0.06 0.35 0.99 0.50 -0.11 0.85 0.15 0.99
BT8.6-11| -2.51 -0.71 -2.12 -1.64 0.01 -0.66 -1.24 -1.17 2.65 -1.01 0.19
BT11-6.7| 37.70( 23.80| 37.15 28.94 17.05( 27.21 20.99 26.43 1.67 15.40 15.16
BT3.9-3.7 -1.34 -5.76 -5.06 -2.62 -5.32 -5.66( -10.71 -3.03| -21.15| -14.05| -1261
BT11-3.7| -2.61| -12.08| -12.26 -5.14 -9.71| -12.65| -24.25 -6.00| -45.14| -32.96| -30.62
BT12-4 1.16 -2.69 -3.11 0.72 -2.36 -4.38 -7.29 0.37| -18.29| -10.64| -11.67
BT13.7-14 8.64 6.19 8.14 7.92 5.08 6.50 6.46 6.91 0.21 5.15 4.86
BT11-3.9| -1.27 -6.32 -7.20 -2.52 -4.39 -6.99( -13.53 -2.96| -23.99| -18.91| -18.02
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Table 6, Class center values of twelve classes at 0935UTC 05 November 05, 2000 (Case

3).
Features| Water| Desert| Desert Land[ Mixed| M.LCls Land| H.Cld MH.| ML.Cld| M.L.Cld| M.L.CId
Cld

Percentage 0.28( 1558 20.26 20.36 341 9.00| 10.61 5.97 6.58 4.50 2.29 0.64
Class Index 1 2 3 4 6 8 9 10 11 12 13 15
BAND1| 12.03| 17.34| 32.68 7.00( 1169 18.85 9.92| 68.07| 39.52| 45.04| 22.76 39.15
BAND2| 13.43| 26.65| 41.28 20.94| 25.03| 30.18] 23.01| 68.07( 46.17( 51.62 33.75( 46.18
BAND3| 16.77 13.46( 19.23 9.81| 14.28| 2265 14.16( 71.84( 43.62( 48.04( 24.84( 4159
BAND4| 13.70( 14.18| 24.06 8.26( 1251 20.14( 1164 67.88 40.32( 4549 23.14 39.75
BAND5| 11.62( 34.46( 49.16 25.18| 28.00| 31.51| 25.67| 54.43| 42.33| 48.66| 35.10| 41.60
BAND6 8.82( 3544 51.72 17.83| 21.70| 22.82| 17.55( 22.15( 23.16( 38.67 28.91 32.04
BAND7 5.14( 25.83( 45.67 8.16( 1240 14.27 8.42| 11.92| 12.75| 25.11| 19.05 18.76
LSD-BAND1 1.45 1.05 0.66 0.37 1.92 1.45 0.49 0.80 1.04 3.36 6.23 13.25
LSD-BAND2 3.37 141 0.86 0.82 2.75 131 0.79 1.47 0.93 3.31 6.20 12.64
LSD-BAND3 0.81 0.25 0.22 0.10 0.92 1.01 0.30 0.69 0.87 2.35 3.74 10.08
LSD-BAND4 0.96 0.46 0.34 0.16 112 1.04 0.32 0.68 0.87 2.46 4.28 10.92
LSD-BAND5 2.67 114 0.74 0.60 2.23 0.99 0.63 1.89 1.09 2.79 4.60 9.29
LSD-BAND6 2.08 1.29 0.66 0.60 2.33 0.89 0.55 0.33 0.47 1.78 4.94 8.41
LSD-BAND7 1.30 137 0.76 0.55 1.93 0.85 0.50 0.32 0.42 124 4.06 5.78
BAND17 9.15 22.78 34.92 16.53 18.74 24.08 17.35 56.54 40.05 42.13 24.83 34.62
BAND18 3.60( 11.06f 17.53 5.63 6.21( 12.56 6.11] 57.01| 28.50| 24.37 9.16 15.15
BAND19 5.29| 15.46| 24.05 9.34] 10.29| 16.31 9.73( 59.12 32.49( 30.76( 14.19 22.04
BAND20| 299.16| 320.95| 320.61| 307.96| 309.07| 299.96| 302.65( 265.43( 275.63| 302.03( 308.12( 303.03
BAND21| 297.19| 317.10| 313.66( 307.10( 306.07( 292.99( 300.57 252.86( 266.26| 290.02( 301.61| 296.19
BAND22( 296.84| 317.16| 314.15| 307.13| 306.12| 292.41| 300.53 242.10( 262.41| 289.26( 301.65( 295.79
BAND23| 293.10( 311.83| 306.77( 304.37( 301.49( 286.93| 296.01| 235.86( 257.40( 282.16( 295.88( 290.43
BAND24| 252.91| 259.94| 257.77| 259.27| 255.79| 246.68| 251.43( 224.48( 233.50( 246.52( 253.66( 253.51
BAND25( 271.31| 283.92| 279.82| 279.97| 276.22| 261.39| 271.26( 219.43( 239.28( 256.72( 270.88( 268.46
BAND26 1.04 1.32 1.77 0.73 1.08 5.05 1.83( 32.86( 13.66 4.99 1.60 2.28




BAND27| 240.71| 245.88| 245.56( 241.15( 241.18| 233.98| 236.74| 216.41( 226.11| 238.52( 240.89( 213.52
LSD-BAND27 0.72 0.72 0.62 0.65 0.69 1.02 0.81 1.20 1.23 0.64 0.62 0.59
BAND28| 255.16| 264.79| 265.04( 257.90 256.47( 245.95( 251.58( 218.68( 232.46( 249.74| 255.32( 225.19
LSD-BAND28 0.99 0.72 0.53 0.71 0.90 161 112 121 181 0.86 0.76 0.73
BAND29| 286.30| 305.55| 294.51( 297.65 293.19 269.51| 286.92 220.23( 241.63| 263.45( 284.13( 280.06
BAND31| 287.58| 310.93| 304.84( 302.04 295.61 267.40( 287.97( 216.93| 238.19( 263.52( 286.19( 249.48
LSD-BAND31 2.52 0.89 0.47 0.87 2.08 3.68 2.13 154 3.20 2.00 221 221
BAND32| 285.59| 310.35| 305.76( 299.99 293.53 264.05( 285.55( 215.84( 236.22( 262.05( 284.27( 279.70
BAND33| 264.51| 277.27| 275.29( 272.93| 268.06( 249.40( 261.24 214.92( 230.65( 252.69( 264.52( 263.43
BAND34| 253.54| 261.41| 259.90( 260.34 256.11( 242.27( 250.17( 213.98( 227.35( 246.29( 254.22( 254.44
BAND35( 246.00| 252.09| 250.77( 252.13 248.17( 237.30( 243.08( 214.53( 225.43( 240.98( 246.82( 247.32
NDVFVEGE| 152.19| 182.78| 167.65| 225.37| 207.45| 186.21| 212.30| 152.97| 162.89| 162.16| 183.76| 171.29
NDVISNOW| 187.88| 85.55| 94.85 95.66| 109.70| 141.94| 119.87| 225.18( 189.46( 159.87( 130.99( 156.94
BT11-12 1.93 0.52 -0.85 1.43 2.01 3.38 2.44 1.10 2.02 1.52 1.90 1.70
BT8.6-11| -1.34 -5.49| -10.05 -3.04 -2.46 213 -1.04 331 3.42 -0.05 -2.07 -1.18
BT11-6.7| 46.86( 65.24| 59.13 59.91 54.45| 33.19 51.20 0.59 12.31| 25.23| 45.35 40.51
BT3.9-3.7| -2.60 -3.79 -7.34 -0.92 -2.99 -7.61 -2.20| -23.27| -13.15| -12.68 -6.33 -6.65
BT11-3.7| -12.44 -9.98| -16.44 -6.63 -13.51| -32.71| -14.75 -48.37| -37.27| -38.33| -21.66| -20.79
BT12-4| -7.82 -1.40 -1.43 -3.69 -7.86| -22.96| -10.57| -19.78| -21.14| -20.10| -11.54| -10.73
BT13.7-14 7.52 9.49 9.23 8.70 7.95 4.95 7.06 -0.53 1.95 531 7.39 7.11
BT11-3.9] -9.83 -6.20 -9.10 -5.71| -10.52| -25.09| -12.55| -2491| -24.12| -25.65| -15.33| -14.14




