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ABSTRACT 

Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational En- 
vironmental Satellite (GOES-6) channels (3.9, 12.7 pm) and Advanced Very High Resolution Radiometer 
channels (3.7, 12.0 pm). Daytime and nighttime discrimination of particle size information is possible given 
the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for 
cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal 
ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated 
relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do 
not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres 
improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre 
polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. 
Surface and view-angle effects are incorporated to provide more realistic simulation. 

1. Introduction 

Current efforts in the remote sensing of clouds via 
satellite-, aircraft-, and ground-based sensors hinge on 
the comparison of theoretical model results and radio- 
metric data. These comparisons provide validation of 
the modeling techniques and the physics of the problem 
studied. Discrepancies indicate limitations of the sen- 
sors, theoretical or physical assumptions and limita- 
tions, and/or numerical inadequacies of the model as- 
sumptions and technique used. 

For the problem of thin cirrus clouds, either single 
layer or in conjunction with lower-level clouds, there 
are many complexities involved. Remote sensing of 
thin cirrus via satellites has led to attempts to derive 
optical and microphysical properties. Parameters most 
commonly derived include cloud optical depth, effec- 
tive particle size, cloud fraction, cloud-top temperature, 
cloud-top height, and emissivity. Analytic methods 
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used to derive this information include spatial coher- 
ence (Coakley and Bretherton 1982), texture tech- 
niques (Welch et al. 1988), and many bispectral or 
multispectral techniques (Platt 1983; Rossow et al. 
1985; Minnis et al. 1987; Baum et al. 1992). Stone et 
al. ( 1990) suggest a bispectral method that is based on 
the combined analysis of lidar/radiometric (LIRAD) 
data ( Platt and Dilley 1979 ) and radiosonde data, em- 
ploying a radiative transfer model. Stone et al. ( 1990) 
compare two independent estimates of cloud proper- 
ties: one estimate is derived from a LIRAD analysis 
and radiosonde data, and the second estimate is derived 
from a difference between coincident infrared (IR) and 
near-IR (NIR) measurements. 

The goal of this paper is to address the application 
of brightness temperature differences ( BTDs) to remote 
sensing of cloud properties, such as those suggested by 
Stone et al. ( 1990)) Prabhakara et al. ( 1988), Inoue 
( 1987), and others. We study the parameters that affect 
BTDs, with particular attention toward a physically 
realistic scenario: high, thin cirrus composed of hex- 
agonal ice crystals over a nonblack surface. The sen- 
sitivity of the radiative transfer model to the number 
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of terms in the Legendre expansion of the scattering 
phase functions is also evaluated. We present examples 
of the errors produced by Legendre polynomial fits to 
truncated and untruncated phase functions, along with 
the effects of view angle, ice crystal size, equivalent or 
composite ice sphere approximations, and a nonblack 
Lambertian surface on the NIR-IR BTD as seen by a 
satellite looking at a thin cirrus cloud above a land (or 
ocean ) surface. 

2. BTD simulation 

a. Radiative transfer model considerations 

The discrete ordinate radiative transfer (DISORT) 
model code of Stamnes et al. ( 1988) was used to per- 
form the calculations to theoretically simulate the ef- 
fects of thin cirrus. This model has been used by a 
number of researchers (Schmidt 199 1; Tsay et al. 199 1; 
Stephens and Tsay 1990)) and the results presented in 
Fig. 1 (see section 2c discussion) compare precisely 
with those obtained from the adding-doubling models 
used by Stone et al. ( 1990) and others (Minnis 1992, 
personal communication ) . All BTD calculations per- 
formed for this paper were done with DISORT. 

b. Cloud model 

For radiative transfer modeling of thin cirrus, the 
simplest approach is to treat the cloud particles as ice 
spheres with an assumed size distribution. A Mie scat- 
tering code (Wiscombe 1979) is then used to determine 
the optical properties of the ice sphere distribution for 
the theoretical models. Given the highly complex na- 
ture of cirrus microphysical properties, this is a rea- 
sonable first-order approach. We assumed the cirrus 
was composed of ice spheres with a gamma size dis- 
tribution as per Hansen ( 197 1) and used the Mie code 
to derive the single-scatter albedos, asymmetry factors, 
volume extinction coefficients, and scattering phase 
functions for the central wavelengths of the Geostation- 
ary Operational Environmental Satellite (GOES-6) 
and Advanced Very High Resolution Radiometer 
(AVHRR) IR and NIR channels. The calculations 
were performed for a single, horizontally homogeneous 
cloud over a black (nonreflective) surface with no in- 
tervening atmosphere. We assumed an isothermal 
cloud temperature of 245 IS, a surface temperature of 
289 K, a satellite view zenith angle of 37” (0” view 
azimuth), and a solar zenith angle of 24”. The incident 
solar intensity used for the 3.9-pm GOES-6 NIR chan- 
nel is 1.87 W rnv2 sr-’ (Iqbal 1983, Table C.l). 

c. Model results for GOES VAS 

Figure 1 shows the daytime and nighttime GOES-6 
VISSR (Visible-Infrared Spin Scan Radiometer) At- 
mospheric Sounder (VAS) BTDs for cirrus clouds 
composed of ice spheres with radii R, of 4, 16, and 64 

601 ' .'...,.I ' ,'..'.I . "."'I ' ...',.'I . ."'I 
ICC Spheres; No Atmosphere 

Henyey-Greenstein Phose Function 

48/l 20 Streoms 

\ \ 
0 I ..,., *, (120) , ,.,Y 

(0) 0.001 0.010 0.100 1 .ooo 10.000 100.000 

12.7pm optical depth 

25- “““’ “““I ..‘.“I . “““1 ’ ..,.‘- 
_ Ice Spheres; No Atmosphere 

- Henyey-Greenstein Phase Function 

20 - 48/120 Streoms 

F - 

,t - 

C15- 
t- - 

Effective Radius: 

- 4P7 
(48) - 

I _ 

-2 :. 
.-..._. ‘6 lun 

pm 

9 - 
n - 

+- - 
(481 - 

5- 

Or 
(120) - 

I * , , , , I , * , , , , , . I , , . , 

0)) 

0.001 0.010 0.100 1 .ooo 10.000 100.000 

12.7pm optical depth 

FIG. 1. (a) Daytime and (b) nighttime GOES-6 VAS BTD signatures 
( T3.9 - T12.,) for cirrus composed of ice spheres over a black surface 
with no intervening atmosphere. Effective radii and the number of 
streams used in the calculations are shown. A Henyey-Greenstein 
phase function was used. 

pm. Radius R, is the effective radius of the gamma size 
distribution that has an effective variance of 0.1. The 
optical properties were derived with the Mie code, and 
a Henyey-Greenstein scattering phase function is used. 
The brightness temperature difference between the NIR 
and IR channels is defined as BTD = 7’NiR - TiR. For 
the GOES VAS channels, BTD = T3.9 - T12.,. The 
contrast between BTD values for small versus large 
particles (R, = 4 versus 64 pm) may be used to deter- 
mine microphysical properties of clouds, provided that 
the IR optical depth is known. This small to large par- 
ticle contrast and the BTD magnitude, larger for day- 
time BTDs due to the NIR reflection of solar radiation, 
will be referred to as a diurnally dependent BTD sig- 
nature. 

While attempting to duplicate the results of Stone 
et al. ( 1990)) an error in cloud extinction optical depth 
wavelength scaling was discovered in their calculation 
of BTDs for the VAS channels. The correctly scaled 
results are shown in Fig. 1 for the day and night BTD 
simulation. Even though the small (4 pm) to large (64 
pm) particle contrast was decreased by approximately 
25% from the original estimate, it is still significant. 
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Stone et al. ( 1990) used single values of refractive 
index to determine the optical properties for the central 
wavelengths of each VAS channel. The calculations 
performed for the VAS channel BTDs shown in Fig. 
1 used single wavelength refractive indices. For an exact 
comparison with the calculations of Stone et al. ( 1990), 
the 3.9-pm optical properties used to calculate BTD 
values in Fig. 1 were taken from Table 2 of their paper. 
While the single value assumption is valid for the 10% 
and 12.7~pm channels, the variability of the refractive 
index of ice over the 3.7- and 3.9~pm channels is sig- 
nificant. In subsequent BTD calculations for the 
AVHRR channels, we used a five-point sensor response 
weighted average for the 3.7~pm channel (NIR) but 
single wavelength refractive indices for the 10% and 
12.0-pm channel (IR) . The five-point weighted average 
generally produced about 10% change in the single- 
scatter albedo. 

3. Theoretical considerations 

a. Legendrejt phase functions 

Radiative transfer models often use a Legendre 
polynomial expansion fit to the scattering phase func- 
tion. Problems arise, however, when the number of 
terms (Legendre coefficients) used in the expansion 
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FIG. 2. Root-mean-square error over all scattering angles 
of the Legendre polynomial fit to (a) Henyey-Greenstein phase 
functions, (b) untruncated 3.7~pm ice hexagon phase func- 
tions, and (c) untruncated 3.7~pm equivalent volume ice 
sphere (Mie) phase functions. Asymmetry factors g and particle 
sizes (R, or L/2a) are indicated. 

produces a fit that does not adequately describe the 
scattering behavior. This problem is most severe for 
radiance calculations involving optically thin clouds 
composed of nonspherical ice crystals as forward scat- 
tering is dominant. 

The number of Legendre coefficients required to ac- 
curately represent a phase function depends on the 
delta-function behavior of the forward-scattering peak 
and the complexity of the phase function. Sharply 
peaked phase functions, such as those determined for 
hexagonal ice crystals (Takano and Liou 1989 ) , require 
many terms. This represents a delta-function “class” 
of phase functions. A second class of phase functions 
are those that are not well represented by delta func- 
tions-for example, those with asymmetry factor g 
6 0.8. Henyey-Greenstein phase functions fall into 
both categories (depending on the value of g), as do 
the so-called Mie phase functions. Both phase function 
classes may require a significant number of terms in 
the Legendre expansion to accurately represent them. 

Figure 2 shows the relation between the number of 
terms in the Legendre polynomial fit of phase functions 
and the rms error over all scattering angles. Figures 
2a-c show results for Henyey-Greenstein, 3.7-pm ice 
hexagon (L/2a = 20/ 20)) and 3.7~pm equivalent vol- 
ume ice sphere (Mie) phase functions, respectively. 
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TABLE 1. Optical properties of hexagonal ice crystals? 

VOLUME 34 

Aspect ratio Lj2a 
(mM-@ Gtb Cm*) 3.73 pm 

WOC 

10.82 pm 12.0 km 

R= (wM 

Volumed Surface areac 

20120 859.8 1 0.8382 0.5726 0.5404 10.7 11.7 
50/40 4039.2 0.7263 0.5385 0.5308 23.2 25.4 

120/60 13 138.3 0.667 1 0.5316 0.5301 40.6 45.7 
300/ 100 51 495.2 0.6064 0.530 1 0.5300 77.5 90.5 
750/160 196 627.7 0.5656 0.5300 0.5300 144 177 

a Reference Takano and Liou ( 1989); Takano et al. ( 1992). 
b Large particle extinction cross section. 
’ Single-scatter albedo for ice hexagons. 
d Equivalent volume effective radius [Eq. (3)]. 
e Equivalent surface area effective radius [Eq. (4)]. 

Takano and Liou ( 1989) derived scattering phase 
functions for a limited set of randomly oriented hex- 
agonal ice crystal sizes at a visible wavelength (0.55 
pm). This work has continued (Minnis et al. 1993), 
and the scattering phase functions for 3.7 and 10.8 pm 
have been calculated. Crystal sizes are defined by aspect 
ratio L/2a (length over twice the hexagonal base ra- 
dius). The aspect ratios and equivalent volume radii 
are given in Table 1, discussed further in section 2d, 
and noted (with asymmetry factor g) in the figures. 
All three phase function fits in Fig. 2 show a decrease 
in the rms error over all scattering angles with asym- 
metry factor (or particle size/aspect ratio, as noted). 
The oscillatory behavior seen is a feature common to 
all of the curves generated because of the mathematics 
of the solution, for example, the inability of a series of 
sines and cosines to reproduce discontinuities in the 
scattering intensity curves. Large particles (high g val- 
ues) still require a significant number (even thousands) 
of terms to produce accurate fits. 

b. Phase function truncation 

A technique commonly used to overcome the prob- 
lem of strongly peaked phase functions is truncation 
(Potter 1970; Wiscombe 1977). The basic tenet of 
phase function truncation is the removal of the sharp 
forward-scattering peak, followed by a renormalization 
of the phase function to ensure energy conservation. 
A Legendre polynomial fit to the modified phase func- 
tion generally requires fewer terms, especially for the 
delta-function class of phase functions. Since the frac- 
tion of the energy (the truncation fraction) in the for- 
ward peak is now considered transmitted radiation, 
the optical depth and single-scatter albedos of the par- 
ticles must be scaled proportionately. The technique 
of scaling the optical properties is based on the simi- 
larity method of Sobolev ( 1978 ). We performed man- 
ually the truncation and renormalization for the phase 
functions. The scattering angle where the phase func- 
tion is truncated is called the “truncation angle.” While 
the truncation angle is generally between 0” and 15 ‘, 

it is sometimes necessary to truncate the phase function 
to a scattering angle of approximately 30”. In the case 
of such severe truncation, a significant portion of the 
forward-scattering behavior is lost. For the modeling 
performed for this study, we found that truncation an- 
gles less than approximately 20” were satisfactory. 
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FIG. 3. Root-mean-square error over all scattering angles of the 
Legendre polynomial fit to (a) truncated 3.7~pm ice hexagon phase 
functions and (b) truncated 3.7-pm equivalent volume ice sphere 
(Mie) phase functions. Asymmetry factors g and particle sizes (R, or 
L/2a) indicated. 
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Figures 3a,b demonstrate the improvement in the 
rms error of the Legendre fit versus the number of terms 
for truncated 3.7-pm ice hexagon and ice sphere phase 
functions. The same line styles are used in Figs. 3a,b 
and Figs. 2b,c to denote the rms error for different 
particle sizes (aspect ratios) with the asymmetry factor 
annotated. Improved Legendre fits are common for all 
particle sizes, but the most dramatic improvements are 
observed for the largest particles (high g values). As 
particle size increases with respect to wavelength, the 
forward-scattering intensity increases in magnitude; 
hence, the delta function nature of the scattering phase 
function becomes more severe. Therefore, truncation 
dramatically affects the ability to fit the large particle 
phase functions with a series of Legendre polynomials. 
The oscillations in the fits are caused by the disconti- 
nuities in the truncated phase functions and the math- 
ematical nature of fitting these “edges” by a series of 
sines and cosines. 

Since scattering is of secondary importance for IR 
modeling of large particle effects, there is a trade-off 
between the number of Legendre coefficients used and 
the acceptable rms error of the fit. Care must be taken, 
however, to address the relative error in the Legendre 
fit of the phase function at specific scattering angles of 
interest. For the delta-function class of phase functions, 
Legendre polynomial fits to truncated versions of the 
phase functions with approximately 50 terms typically 
produce rms errors over all scattering angles of less 
than approximately 20%. 

It is important to note that the scattering geometry 
between the sun and the National Oceanic and At- 
mospheric Administration satellites typically provides 
scattering angles 77 between 75 O and 180”. Hence, it is 
not necessary to precisely fit the halo angles, and a 
reasonable fit for q can be performed with only 32 
terms, even though the rms error over all angles is rather 
high. Though a substantial reduction in computational 
effort and time results, generally it is not sufficient to 
use this “lower-order” fit without first checking the rel- 
ative error at the computational angles of interest. 

c. Error in brightness temperature 

The version of the DISORT model code used for 
these simulations ( Stames et al. 1988 ) sets the number 
of Legendre coefficients used to fit the phase function 
identical to the number of streams. The number of 
streams used to calculate the GOES VAS BTD curves 
in Fig. 1 varies between 48 and 120, as noted. Un- 
truncated Henyey-Greenstein phase functions were 
used for the calculations. For daytime simulation, the 
larger particles ( 64 pm) required at least twice as many 
terms as the 4- and 16-pm particles ( 120 streams versus 
48) to ensure convergence of the discrete ordinate so- 
lution and reasonable rms errors (<3%) in the Legendre 
fit over all scattering angles. Convergence tests were 
performed for all of the simulations presented in this 

paper and the minimum number of streams deter- 
mined for computational efficiency (change in BTD 
< 0.5 IS was used as a sufficient condition). 

Figure 4 indicates the effects of the number of terms 
in the Legendre expansion of the scattering phase 
function on brightness temperature calculations for a 
specific geometry and two particle sizes. The rms rel- 
ative error over a range of cloud optical depths (6, 
= O-10) for a 37” view angle (0” view azimuth) is 
shown for 3.7 pm. The rms errors shown are relative 
to the 120-stream calculated values. The 3.7-pm cal- 
culations are more sensitive to the number of Legendre 
coefficients used to fit the phase function than the 10.8- 
or 12.0~pm calculations due to the contribution of re- 
flected solar radiation and the more complex shape of 
the scattering phase function. Daytime calculations 
were performed for a cloud composed of two different 
hexagonal ice crystals (L/2a = 20/20 and 300/ 100) 
using the truncated hexagonal ice crystal phase function 
fit. The oscillatory nature of the 3.7-pm brightness 
temperature error is due to the behavior of the Legendre 
fit of the truncated phase function for the specific scat- 
tering geometry of the simulation ( 119” scattering an- 
gle) and the numerical method of solution. For the 
32+ term solutions, the error in the 3.7-pm tempera- 
ture calculation is less than approximately 0.4 K for 
both small and large particles with the geometry spec- 
ified. The larger particle has larger error fluctuations, 
indicative of a more significant convergence problem, 
that is, a stronger dependence on the scattering and 
absorption behavior. The behavior at other viewing 
geometries is similar, though the error fluctuations 
( -0.1 K) are damped if one considers the rms error 
over scattering angles greater than approximately 30” 
only. The primary conclusion, however, is that the 32- 
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FIG. 4. Daytime rms error in the 3.7-pm brightness temperature 
(T3.,) values versus the number of streams used in the calculations 
for two particle sizes. The rms errors are calculated relative to the 
120~stream results (over a range of cloud optical depths), and the 
number of streams equals the number of Legendre coefficients used 
to fit the scattering phase function. 
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term fit produces consistently reliable results with rms 
errors less than 0.5 K. 

d. Equivalent radius definition 

The literature (Takano et al. 1992; Asano and Sato 
1980; Pollack and Cuzzi 1980) cites the use of equiv- 
alent volume spheres to best conserve the single-scatter 
albedo of ice hexagons, and the use of equivalent sur- 
face area spheres to best conserve the extinction cross 
section. To test the effects of these approximations, we 
determine both equivalent volume and equivalent sur- 
face area spherical radii. Using the conservation of sin- 
gle-scatter albedo, we attempt to conserve the absorp- 
tion and scattering characteristics of the hexagons for 
the NIR and IR regimes. 

The effective size parameter ( xcff = 27rRJ A) gen- 
erally governs the choice of an equivalent volume or 
equivalent surface area approach. Pollack and Cuzzi 
( 1980) use a critical size parameter x0 to parameterize 
the difference between large and small particle behav- 
ior, where ~0 is dependent on the imaginary component 
of the refractive index mi and the shape and size of the 
particle. Pollack and Cuzzi ( 1980) conclude that when 
one considers the phase function and efficiencies for 
particles with x,K < x0 and the absorption efficiency 
for particles with X,f > X0 (or 2X,rmi < 1 ), equal vol- 
ume spheres are appropriate. However, when consid- 
ering the scattering efficiency and diffraction pattern 
of particles with X,e > X0 (or 2 X,‘ff-mi > 1 ), equal area 
spheres are considered appropriate. We first elect to 
show the equivalent volume approach; the equivalent 
surface area effective radius then simply follows. 

Formally, the particle absorption or coalbedo cx is 
given by cy = 1 - oo, where w. is the single-scatter 
albedo w. for a distribution of particles. The single- 
scatter albedo is defined as 

c Qxat+-‘)W’W’ 
J 

00 = 

s 

9 (1) 

QcxtW)nWdr' 

where Qxat and Qext are the scattering and extinction 
efficiencies, r ’ is the particle size, a( r ‘) is the geometrical 
cross section, and n( r ‘) is the number density in the 
particle size range r ’ to r ’ + dr ‘. The extinction effi- 
ciency is the sum of the absorption and scattering ef- 
ficiencies: Qext = QXat + Qabs. In the large particle limit 
~~ff-9 1, the extinction efficiency Qext = 2. Further, in 
the limit of moderate to weak absorption (valid in the 
IR and NIR for the particle sizes considered) Qabs 
= kr ‘, where k is a constant. Using these assumptions, 
we can define an “effective radius”: 

f r’a( r’)n( r’)dr’ 

R,=J 

s 

9 (2) 
a( r’)n( r’)dr’ 

where r ’ and a( r ‘) are determined from the particle 
size distribution and shape. 

Since absorption is dominant for the wavelengths 
modeled, the volume (e.g., mass) of the ice particle is 
more important than either its shape or orientation. 
Hence, we assume that the ice hexagons are distributed 
randomly. We then find the equivalent volume radius 
by equating the volume of a sphere with that of a regular 
ice hexagon, that is 4/grr3 = 3a2L sin+, where L is 
the length of the hexagonal cylinder, a is the hexagon 
base radius, and r is the spherical radius. The form of 
the geometrical particle cross section c( r’) depends on 
the orientation of the hexagons. For a distribution of 
randomly oriented hexagons, you can use an average 
extinction cross section a( r ‘) = A /2 as per Takano 
and Liou ( 1989). Symmetry is assumed, and A, the 
surface area of a hexagonal cylinder, is A = 3a2[ fi 
+ 4( L/2a)]. In this paper, we have considered only a 
single size distribution of hexagonal crystals; hence, a 
and L are constants, and the equivalent volume effec- 
tive radius is simply 

R,( volume) = 
( 9a2L$r~/3)‘f3. (3) 

For the aspect ratios (L/2a) given in Takano and Liou 
( 1989 ) , the equivalent volume effective radii are given 
in Table 1. 

To determine the equivalent surface area radius, we 
replace the equal volume assumption with an equal 
surface area assumption; for example, 47rr2 = 3a2[ V? 
+ 4( L/ 2a)]. We again assume symmetry, and the 
variables are as defined as before. For a distribution of 
randomly oriented hexagons of uniform size, the 
expression for the effective radius of a equivalent sur- 
face area is 

( 

3ba2 + 6aL 

1 

‘I2 
R,( surface area) = 

47r 
. (4) 

The equivalent surface area effective radii are provided 
in Table 1. 

4. AVHRR BTD simulations 

Figure 5 shows a comparison of the daytime and 
nighttime AVHRR BTDs for equivalent volume and 
surface area ice spheres and the corresponding hex- 
agonal ice crystals. Two particle sizes were selected to 
illustrate the BTD dependence on absorption and scat- 
tering efficiency as a function of the size parameter. 
The BTDs are for a cirrus cloud over a blackbody sur- 
face with aspect ratios and effective radii as denoted. 
The differences between the two spherical approxi- 
mations are generally small compared to the BTD 
magnitude, the large-to-small particle contrast (ap- 
proximately 1 K versus tens of kelvins), and the dif- 
ference between the hexagon BTDs and the individual 
spherical BTDs. The BTD signature of clouds com- 
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FIG. 5. (a) Daytime and (b) nighttime AVHRR BTD ( T3, - T,,,) 
signatures for cirrus composed of randomly oriented ice hexagons 
and equivalent ice spheres over a black surface with no intervening 
atmosphere. Two different ice hexagon particle size BTD signatures 
are compared to equivalent volume and surface area ice sphere results 
(see Table 1). 

posed of randomly oriented hexagonal ice crystals is 
significantly different from that of a cloud composed 
of equivalent ice spheres (volume or surface area), 
particularly for optically thick clouds. The following 
sections discuss these differences in more detail. 

a. Spherical ice particles 

Figure 5 shows a comparison of the daytime and 
nighttime BTD signatures for ice spheres versus ice 
hexagons for the AVHRR 3.7- and 12.0~pm channels. 
The incident solar intensity used for the 3.7-pm 
AVHRR NIR channel is 4.055 W me2 sr-’ (Iqbal 
1983, Table C. 1). The model conditions are otherwise 
the same as those cited for Fig. 1. The brightness tem- 
perature difference between the AVHRR NIR-IR 
channels is dependent on particle size and is defined 
as BTD = T3., - T12.0. 

As shown in Fig. 5 (and Fig. 1 for VAS), the daytime 
BTD signatures for cirrus composed of ice spheres have 
high BTD values ( >30-40 K) for small particles (R, 

< 16 pm). Particles of all sizes demonstrate an asymp- 
totic BTD limit with large cloud extinction optical 
depth 6, b 10. At night, the BTD values increase with 
cloud optical depth to a peak value when 6, - 2-3, 
where the cloud emissions become dominant. This 
small-to-large particle contrast and the BTD magnitude 
is the diurnally dependent BTD signature. The contrast 
in daytime BTDs between cirrus composed of small 
versus large ice crystals ranges from 40 to 55 K for 
optical depths 2 tc 6, < 5, while the contrast for night- 
time BTDs is approximately 10 K for the same range 
of optical depths. 

Neither equivalent sphere (volume or surface area) 
accurately mimics the scattering or absorption prop- 
erties of a distribution of randomly oriented ice hex- 
agons. The ice spheres overestimate the BTDs for op- 
tically thin clouds and underestimate the BTDs for the 
optically thick clouds. This BTD behavior of equivalent 
spheres is most easily observed for two limiting cloud 
optical depths (6 c tc 1 and 6, t 10) and is more evident 
for small particles, such as the daytime L/2a = 20/ 20 
case in Fig. 5a. In this case, ABTD = 4-5 K for 6, 
- 1 and ABTD = 5-6 K for 6, - 10, where ABTD 
is defined as 1 BTDhexagon - BTDsphere ) . 

The choice of equivalent sphere (volume or surface 
area) is insignificant compared to the hexagonal crystal 
BTD signature when only the IR components are con- 
sidered (nighttime cases). For the nighttime L/2a 
= 20/20 case, ABTD = 3 K for 6, - 3 and ABTD 
= 4 K for 6, - 10. The primary problem apparent 
from Fig. 5b is the shift in the peak BTD values to 
larger extinction optical depth (from 6, x 2.0 to 6, 
= 3.0). There is an identical shift in the daytime BTD 
simulations (Fig. 5a); it is just not as obvious due to 
the shape of the BTD signature. This shift in BTD is 
easily explained. The extinction cross sections (hence, 
optical depths) of ice hexagons (see Table 1) are larger 
than those of equivalent ice spheres, while the single- 
scatter albedos of ice hexagons are smaller than those 
of equivalent ice spheres. Overestimation of 6, and un- 
derestimation of o. results in an apparent increase in 
absorption by the cloud, which causes an increase in 
BTD for optically thin clouds and a BTD peak shift. 

b. Hexagonal ice crystals 

Figure 6 provides examples of BTD signatures for 
cirrus clouds composed of randomly oriented hexag- 
onal ice crystals of different sizes over a blackbody sur- 
face. The model calculations are performed for single 
particle size distributions characterized by the aspect 
ratios given in Table 1. Since a 12.0~pm ice hexagon 
phase function was not available, the 10.8~pm hexag- 
onal ice crystal phase functions (Minnis et al. 1993) 
were used as first-order 12.0-pm functions. For hexa- 
gons that satisfy the large particle approximation ( x,R 

>z 30)) the single-scatter albedos used in the calculations 
were generated from expressions for the extinction and 
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FIG. 6. (a) Daytime and (b) nighttime AVHRR BTD signatures 
for cirrus composed of randomly oriented ice hexagons over a black 
surface with no intervening atmosphere. 

scattering cross sections from Takano and Liou ( 1989 ) . 
For small hexagonal crystals ( Xeff < 30)) where ray- 
tracing techniques cannot be used to determine optical 
properties, the small particle parameterization of 
Takano et al. ( 1992) is used. Takano et al. ( 1992) 
suggested the use of spheroids (oblate and prolate) to 
model the behavior of randomly oriented hexagonal 
ice crystals. We have used an analogous approach, the 
composite sphere (see the next section). The optical 
properties for the hexagonal ice crystals are provided 
in Table 1. 

Comparison of the daytime BTD values for hexag- 
onal ice crystals with the values for ice spheres (Fig. 
5) shows that the BTD contrast between small (R, 
= 10.7 pm or L/2a = 20/20) and large (R, = 77.5 
pm or L/2a = 300/ 100) particles is greater for optically 
thick clouds composed of hexagonal crystals, and less 
for optically thin clouds. The contrast in daytime BTDs 
between cirrus composed of small versus large hexag- 
onal ice crystals ranges from 15 to 50 K for optical 
depths 2 tc 6,% 5, while at night the contrast in BTDs 
is approximately 10 K for the same range of optical 
depths. 

5. 

a. 

METEOROLOGY VOLUME 34 

Use of composite ice spheres 

Comparison to hexagons and equivalent spheres 

While performing the equivalent ice sphere versus 1 

ice hexagon simulations and comparisons, a question 
arose: Can one use an ice sphere to accurately repro- 
duce the BTD signature of an ice hexagon? Intuitively, 
there is no indication that this approach will work since 
the single-scatter albedos and extinction optical depths 
are incorrectly estimated by means of equivalent ice 
sphere approximations. Further, the ice sphere (Mie) 
and Henyey-Greenstein phase functions do not truly 
represent the more complex scattering behavior of the 
hexagonal ice crystals. However, if one blithely ignores 
these difficulties, an option arises. Namely, the con- 
struction of equivalent “composite” spheres to model 
ice hexagons. 

To first order, the w. values for equivalent volume 
spheres best approximate the ice hexagon 00 values, 
while equivalent surface area sphere text values best 
approximate the text values of ice hexagons. We pro- 
posed a test: build a “composite” sphere incorporating 
these two features, pick a scattering phase function, 
and perform BTD simulations. Figure 7a shows the 
daytime BTD signatures that result for a small particle 
(L/2a = 20/20) simulation. The solid curve is the ice 
hexagon BTD signature; the others represent different 
composite sphere simulations, where the scattering 
phase function is variable, as noted. The use of a com- 
posite sphere with a hexagonal crystal phase function 
provides the closest comparison to the actual hexagon 
BTD. A composite sphere with an equivalent volume 
ice sphere (Mie) phase function gives the best result 
of the spherical scattering phase functions. Comparison 
of Figs. 5a and 7a shows that for 6,% 3 the composite 
sphere is a better approximation than either equivalent 
sphere with an approximate 50% reduction in ABTD 
( ABTD < 3 K, < 10% of the BTD magnitude). The 
composite sphere produces the proper BTD peak and 
comparable BTDs for 6, t 6, that is, ABTD = 6-8 K 
for the composite sphere versus ABTD x 4-7 K for 
the equivalent spheres. 

Figure 7b shows the results of the nighttime BTD 
simulation of the L/2a = 20/20 case with the com- 
posite sphere. Comparison of Figs. 5b and 7b indicates 
that the composite sphere versus hexagon BTDs show 
better agreement than the equivalent sphere versus 
hexagon comparison. The composite sphere plus hex- 
agonal ice crystal phase function again provides the 
best comparison over all cloud optical depths. The peak 
BTD is not well modeled for composite spheres with 
the equivalent ice sphere (Mie) scattering phase func- 
tions. For large optical depths (6, t 4), the composite 
sphere BTDs reproduce the ice hexagon BTDs quite 
well. There is generally a factor-of-2 decrease in ABTD 
when composite spheres, rather than equivalent 
spheres, are used to represent ice hexagons. 
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FIG. 7. Comparison of the (a) daytime and (b) nighttime AVHRR 
BTD signatures for a cirrus composed of randomly oriented ice hex- 
agons (solid line) and a composite sphere with different scattering 
phase functions. 

Several interesting points rise from the use of a com- 
posite sphere. First, since the effects of randomly ori- 
ented ice hexagons on BTDs are more accurately mod- 
eled by means of composite spheres than by equivalent 
spheres, the next step is to explore the application of 
composite spheres to more complex nonspherical par- 
ticles (dendrites, bullet, rosettes, etc.). Second, the 
availability of nonspherical particle optical properties 
is limited, particularly as regards the scattering phase 
functions. This is a problem if one hopes to use satellite 
information to estimate particle sizes. Use of composite 
spheres to mimic optical properties of nonspherical 
particles is, therefore, useful. Further work is in progress 
to compare the intuitively similar results of composite 
spheres and spheroids (Takano et al. 1992; Bohren and 
Huffman 1983). We expect that the approaches will 
produce similar results, though the determination of 
equivalent radii for accurate comparison of spheroids 
and composite spheres is a bit problematic. 

b. Particle size estimates from BTDs 

The dependence of BTD on particle size is fairly 
simple to determine if one uses spherical particles. Since 

the BTD signatures approach a limit as the size of the 
particle increases, the sensitivity of BTD to particle 
size for a specific cloud optical depth must also have 
bounds. We use composite spheres to approximate the 
optical behavior of ice hexagons by determining w. and 
6, as described previously and then rely on the fact that 
the scattering phase function varies slowly with particle 
size (aspect ratio). We select the ice hexagon phase 
function with the closest size and then vary the size of 
the composite sphere to simulate BTDs; this establishes 
the BTD dependence on R, for particles with radii be- 
tween about 10 and 150 pm. Calculations using com- 
posite spheres indicate that a 5-K change in daytime 
BTD for large optical depths (6, b 3) translates into a 
5-6-pm change in R,. Equivalently, at night, a 5-6- 
pm change in R, translates into an approximate 
1.5-K shift in peak BTD, or ABTD. We define ABTD 
as the absolute difference between the ice hexagon 
result and the composite sphere results with differ- 
ent scattering phase function; for example, ABTD 
= 1 BTDhexagon - BTD,-omposite I. The ability to translate 
ABTD into AR, is very useful, since there are only a 
discrete number of hexagonal crystal phase functions 
available in the literature (Takano and Liou 1989). 
The translation of ABTD to AR, holds even when ice 
hexagon scattering information is not available. Figure 
7 illustrates this point. In the large optical depth limit, 
Fig. 7a indicates that the daytime ABTDs vary from 6 
to 15 K, depending on the phase function selected. 
This implies that effective radii can be estimated during 
the day to within about 15 pm at worst, and to within 
about 5 pm at best. Figure 7b indicates that ABTD 
varies from 1 to 4 K at night for peak BTD values (6, 
- 3 ) , which implies that effective radius estimates are 
also within about 5- 15 pm at night. This consistency 
is encouraging and can be attributed to the dominance 
of absorption at the NIR and IR wavelengths used in 
our analysis. Further work must be done to study and 
apply these results, with special attention to the de- 
pendence of BTDs on scattering angle. 

6. BTD dependence on surface and view angles 

a. Surface reflectance and atmosphere 

To more accurately estimate the particle size BTD 
dependence under realistic conditions, it is necessary 
to account for the effects of a nonblack surface. The 
effects of a thin cirrus composed of small, randomly 
oriented hexagonal ice crystals (L/2a = 20/20) over 
different Lambertian surfaces (hemispheric reflectance, 
ps) on BTDs are given in Fig. 8 for day and night. 
Black ( ps = 0%) and nonblack ( ps f 0%) surfaces are 
considered. BTDs are provided for a variety of surface 
types (quartz sand, seawater, deciduous vegetation, and 
smooth sea ice) with reflectance information from 
Salisbury and D’Aria ( 1992, 1994). The NIR and IR 
surface reflectances for the four surface types cited are 
given in Fig. 9 with satellite channels annotated. For 
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study, we are comparing the results of a line-by-line 
radiative transfer model ( Kratz et al. 199 1; Schmidt et 
al. 1993) with the DISORT band model (Stamnes et 
al. 1988). A correlated k-distribution method similar 
to that of Fu and Liou ( 1992) is the basis for efforts to 
evaluate the spectral line overlap problem and its effects 
on NIR and IR optical depth profiles for finite band 
models. 
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Figure 10 illustrates the effect of view zenith angle 
on the diurnal BTD signatures. A cirrus cloud com- 
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tering phase function dominates the radiative transfer 
calculations used to simulate AVHRR or GOES ra- 
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FIG. 8. (a) Daytime and (b) nighttime AVHRR BTD signatures 
for cirrus composed of randomly oriented hexagonal ice crystals over 
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carbonate bands (Fig. 9) significantly influences the 
reflectance and emissivity of the surface. Figure 8a 
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icant effect on the daytime BTD signature due to the 12 10 

contribution of reflected solar radiation at 3.7 pm. The 
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BTD contrast between thin clouds over sandy surfaces 
(quartz) and thin clouds over other surface types is 
significant (325 K). At night, the range of BTDs for 
most surface types is less than approximately 2 K as 
indicated in Fig. 8b. For sandy (quartz) surfaces, the 
BTD signature again shows a distinct and significant 
( -8 K) difference, even for optically thick clouds (6, 
b 4). This is due to the nonblack surface emittance. 
That is, for quartz sand the emittance ( 1 - ps) is 
approximately 0.5. 
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GOES NEXT 

The effects of a realistic clear-sky atmospheric profile 0.00 I I I I 0.00 

were considered but are not completely resolved. For 
optically thin clouds, it is important to determine the 
clear-sky background effects, particularly in the NIR 
and IR. We are in the process of computing clear-sky 

FIG. 9. Hemispheric reflectances of different surface material in 

optical depth profiles for the AVHRR 3.7-, 10.8-, and 
the (a) 3.7~pm and (b) lo-12-pm window (from Salisbury and D’Aria 
1992, 1994). Different satellite channels are indicated. 

12.0-pm channels, among others. To facilitate our 
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FIG. 10. Dependence of the (a) daytime and (b) nighttime AVHRR 
BTD signature on view zenith angle for a cirrus composed of randomly 
oriented ice hexagons over a black surface with no intervening at- 
mosphere. 

diances. For the example, in Fig. 10, given solar zenith 
angle ( B0 = 24”) and satellite view azimuth ($ = 0” ), 
the corresponding scattering angle for the phase func- 
tion q is simply q = 180” - B0 - 8 = 156” - 8. AVHRR 
view zenith angles 8 between 0” and 60” correspond 
to 11 between 156” and 96”. 

As Fig. 10 shows, top-of-the-atmosphere (TOA) 
BTDs at all cloud optical depths are significantly af- 
fected when view zenith angles are greater than ap- 
proximately 60”. This is particularly true for optically 
thin clouds (6, < 0.5 ) . This is due primarily to limb 
effects on the NIR and IR BTD signatures when view- 
ing cirrus over a hot surface. In the IR window, su- 
perposition of a cold cloud over a hot surface will cause 
limb darkening. (For example, as the pathlength 
through the cirrus increases with an increase in 8, the 
apparent surface brightness temperature will decrease.) 
In the NIR, the superposition of a cirrus cloud will 
have different effects during the day versus night. At 
night, a cirrus will cause limb darkening in the NIR, 
though the magnitude of the darkening is less than that 
seen in the IR window. During the day, the presence 
of the cirrus will actually cause limb brightening at 3.7 

pm, or an increase in the apparent surface brightness 
temperature. The limb brightening is due to the re- 
flection of incident solar radiation by the ice crystals 
in the cirrus cloud. In both daytime and nighttime 
cases, the pathlength through the cloud increases with 
cos8, and the limb effects consequently increase with 
view zenith angle. Since the apparent brightness tem- 
peratures in the NIR either increase or decrease slowly 
compared to the IR values, the BTDs increase as the 
view zenith angles move away from nadir. 

We have not considered the effects of the sphericity 
of the atmosphere or horizontal cloud inhomogeneities 
that would mitigate some of the TOA BTD dependence 
on view zenith. However, these effects are expected to 
be small in comparison with the magnitude of the BTD 
signatures for 8 6 80”. Beyond about 80”, the plane- 
parallel approximation begins to break down, which 
means that model BTDs will become highly nonlinear 
functions of case. The BTDs for view zenith angles 
less than 40” show only a slight dependence on cos8, 
as expected, since limb effects are minimized by small 
changes in the optical paths. The increase in cirrus BTD 
magnitude for view zenith angles greater than 60” 
agrees with prior analysis of the effects of optically thin 
cirrus on the radiometric profile of the upper tropo- 
sphere (Schmidt et al. 1990). 

7. Conclusions 

Effective cirrus cloud particle size discrimination 
from satellite data is theoretically possible, if the IR 
extinction optical depth of the cloud can be deterrnined 
and the NIR-IR BTD values measured. Generally, 
complications arise because of the broad range of par- 
ticle sizes and shapes that compose cloud composition. 
We have considered only randomly oriented hexagonal 
ice crystals and ice spheres, ignoring bullets, rosettes, 
dendrites, and other crystal types commonly found in 
cirrus clouds (Heymsfield and Platt 1984). BTD sim- 
ulations provide a means to combine radiative transfer 
modeling and observational data analysis of cirrus 
clouds. The use of NIR-IR BTD signatures to bound 
cloud ice particle size estimates as derived from satel- 
lite-borne radiometers appears reasonable for optical 
depths (6,) greater than approximately 1 during the 
day and 1 tc 6, 6 6 at night. 

The rms error in the brightness temperatures cal- 
culated and the NIR-IR BTD signatures are sensitive 
to the number of Legendre coefficients used to fit the 
scattering phase function. The effectiveness of trun- 
cation is highly dependent on the delta-function nature 
of the forward-scattering peak and the complexity of 
the phase function. For ice hexagon and ice sphere 
phase functions with large asymmetry factors (g 
>z 0.85), Legendre polynomial fits to the truncated 
phase functions can be done with less than approxi- 
mately 20% rms error over all scattering angles with 
50 coefficients or fewer. The simulation geometry may 
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limit the usefulness of truncation, particularly if halo 
or solar aureole effects are to be modeled, and the rel- 
ative error of the Legendre fit at specific scattering an- 
gles of interest must be considered. 

The BTD signature of a cirrus cloud composed of 
equivalent ice spheres (volume or surface area) is dif- 
ferent from the BTD signature of a cirrus composed 
of randomly oriented ice hexagons. The difference is 
due to the fact that equivalent spheres overestimate 
single-scatter albedo w. and underestimate cloud ex- 
tinction optical depth 6,. For daytime simulations, use 
of equivalent sphere models generates BTDs that are 
in error by 4-6 K for 1 tc 6, < 6, while the use of the 
composite spheres reduces the error by a factor of 2. 
For the nighttime simulations, the composite sphere 
model also approximately halves the BTD error (from 
2-4 to 1.5-2 K) for the same range of cloud optical 
depths. Composite sphere model simulations also pro- 
duce peak BTD values at the correct optical depths. 
Use of composite spheres to model more complex ice 
crystals is promising as the variation of BTD with par- 
ticle size is easily determined. Further study is required 
to establish limits on the use of composite spheres, par- 
ticularly as an approximation to other types of non- 
spherical particles. Comparison of the effects of com- 
posite spheres to those of spheroids is planned to de- 
termine the validity of the solution. 

The reflectance properties of all nonblack surfaces 
are important, particularly as regards the particle size 
contrast in BTDs for optically thin clouds. The sim- 
ulations for a cirrus cloud composed of hexagonal ice 
crystals over a quartz sand surface indicate that the 
surface reflectance dominates the BTD for cloud optical 
depths 6, < 6. Detection and characterization of cirrus 

support for analysis and modeling efforts. We also wish 
to thank Drs. Y. Takano, K.-N. Liou, and P. Minnis 
for providing the 3.7- and 10.8-pm hexagonal ice crystal 
phase functions, and Drs. Salisbury and D’Aria for the 
surface reflectance database. David Bailey assisted with 
the preparation of figures for the manuscript. 

REFERENCES 

Asano, S., and M. Sato, 1980: Light scattering by randomly oriented 
spheroidal particles. Appl. Opt., 19, 962-974. 

Baum, B. A., B. A. Weilicki, P. Minnis, and L. Parker, 1992: Cloud 
property retrieval using merged HIRS/2 and AVHRR data. J. 
Appl. Meteor., 31, 351-369. 

Bohren, C. F., and D. R. Huffman, 1983: Absorption and Scattering 
of Light by Small Particles. John Wiley & Sons, 530 pp. 

Coakley, J. A., Jr., and R. P. Bretherton, 1982: Cloud cover from 
high resolution scanner data: Detecting and allowing for pa&ally 
filled fields of view. J. Geophys. Res., 87, 4917-4932. 

Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method 
for radiative transfer in nonhomogeneous atmospheres. J. Atmos. 
Sci., 49, 2 139-2 156. 

Hansen, J. E., 197 1: Multiple scattering of polarized light in a plan- 
etary atmosphere. Part II: Sunlight reflected by terrestrial water 
clouds. J. Atmos. Sci.. 28, 1400- 1426. 

Heymsfield, A. J., and C. M. R. Platt, 1984: A parameterization of 
the particle size spectrum of ice clouds in terms of the ambient 
temperature and the ice water content. J. Atmos. Sci., 41, 846- 
855. 

Inoue, T., 1987: A cloud type classification with NOAA-7 split-window 
measurements. J. Geophys. Res., 92, 399 I-4000. 

Iqbal, M., 1983: An Introduction to Solar Radiation. Academic Press, 
390 pp. 

Kratz, D. P., B.-C., Gao, and J. T. Kiehl, 199 1: A study of the radiative 
effects of the 9.4- and 10.4-micron bands of carbon dioxide. J. 
Geophys. Res., 96,902 l-9026. 

Minnis, P., E. F. Harrison, and G. G. Gibson, 1987: Cloud cover 
over the eastern equatorial Pacific derived from July 1983 ISCCP 
data using a hybrid bispectral threshold method. J. Geophys. 
Res., 92, 405 l-4073. 

-, K.-N., Liou, and Y. Takano, 1993: Inference of cirrus cloud 

clouds over desert is known to be difficult; our results properties using satellite-observed visible and infrared radiances. 

confirm that fact. Surface reflectance contributions Part I: Parameterization of radiance fields. J. Atmos. Sci., 50, 

from seawater, smooth sea ice, and deciduous vege- 
1279- 1304. 

tation dominate the BTD signatures of thin cirrus 
Platt, C. M. R., 1983: On the bispectral method for cloud parameter 

determination from satellite VISSR data: Separating broken 

clouds (6, < 1 .O) during the day. At night, the cloud- cloud and semitransparent cloud. J. Climate Appl. Meteor., 22, 

top temperature controls BTDs for optically thick cirrus 429-439. 

(6, t 4) above most surface types (other than quartz 
-, and A. C. Dilley, 1979: Remote sounding of high clouds. Part 

sand); nonblack surface emissions contribute for 6, 
I: Calculation of visible and infrared optical properties from 
lidar and radiometer measurements. J. Appl. Meteor., 18, 1130- 

< 3. 1143. 

View zenith angle effects on the BTD signatures in- Pollack, J. B., and J. N. Cuzzi, 1980: Scattering by nonspherical 

dicate that for view zenith angles 0 tc 40” the BTD 
particles of size comparable to a wavelength: A new semi-em- 

signatures are minimally affected. However, for larger 
pirical theory and its application to tropospheric aerosols. J. 
Atmos. Sci.. 37. 868-88 1. 

view zenith angles 6 L 60°, the BTD signatures depart Potter, J. F., 1970: The delta function approximation in radiative 

significantly from the nominal case dueto limb effects. transfer theory. J. Atmos. Sci., 27,943-949. 

For 8 t 80”, the plane-parallel approximation also be- Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, and R. J. Curran, 

gins to break down, so care must be taken when com- 
1988: Thin cirrus clouds: Seasonal distribution over oceans de- 

paring model BTDs to satellite observations at large 
duced from Nimbus 4 IRIS. J. Appl. Meteor., 27, 379-399. 

Rossow, W. B., F. Mosher, E. Kinsella, A. Arking, M. Desbois, E. 

view zenith angles. Harrison, P. Minnis, E. Ruprecht, G. Seze, C. Simmer, and E. 
Smith, 1985: ISCCP cloud algorithm intercomuarison. J. Cli- 

Acknowledgments. We wish to thank NASA Langley mate Appl. Meteor., 24, 877-603. 

Research Center for their support. The LaRC Atmo- Salisbury, J. W., and D. M. D’Aria, 1992: Emissivity of terrestrial 

spheric Science Division, Lockheed Engineering and 
materials in the 8-14 pm atmospheric window. Remote Sens. 

Science Company, and the NOAA Climate Monitoring 
Environ., 42, 83- 106. 

-, and -, 1994: Emissivity of terrestrial materials in the 3-5 

and Diagnostics (CMDL) Laboratory also provided pm atmospheric window. Remote Sens. Environ., 47,345-36 1. 



FEBRUARY 1995 SCHMIDT ET AL. 459 

-, E. M. Patterson, and W. J. Williams, 1990: Influence of high 
altitude clouds on upper tropospheric radiance measurements. 
Appl. Opt., 29, 4 199-4207. 

Schmidt, E. O., 199 1: Cloud properties as inferred from HIRS/2 
multi-spectral data. Ph.D. dissertation, Georgia Institute of 
Technology, 145 pp. 

-, D. P. Kratz, and B. A. Wielicki, 1993: Effects of cirrus clouds 
and the atmosphere over land and ocean surfaces. Proc. Znt. 
Geosci. and Remote Sens. Symp., 3, 1107-l 112. 

Sobolev, V. V., 1978: A Treatise on Radiative Transfer. D. Van Nos- 
trand Co., Inc., 239 pp. 

Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: 
Numerically stable algorithm for discrete-ordinate-method ra- 
diative transfer in multiple scattering and emitting layered media. 
Appl. Opt., 24, 2502-2509. 

Stephens, G. L., and S.-C. Tsay, 1990: On the cloud absorption 
anomaly. Quart. J. Roy. Meteor. Sot., 116, 67 l-704. 

Stone, R. S., G. L. Stephens, C. M. R. Platt, and S. Banks, 1990: The 
remote sensing of thin cirrus cloud using satellites, lidar and 
radiative transfer theory. J. Appl. Meteor., 29, 353-366. 

Takano, Y., and K.-N. Liou, 1989: Solar radiative transfer in cirrus 
clouds. Part I: Single-scattering and optical properties of hex- 
agonal ice crystals. J. Atmos. Sci., 46, 3- 19. 

-- and P. Minnis, 1992: The effects of small ice crystals 
on infrared radiative properties. J. Atmos. Sci., 49, 1487- 
1493. 

Tsay, S.-C., G. L. Stephens, and T. J. Greenwald, 199 1: An inves- 
tigation of aerosol microstructure on visual air quality. Atmos. 
Environ., 25A, 1039-1053. 

Welch, R. M., S. K. Sengupta, and D. W. Chen, 1988: Cloud field 
classification based upon high spatial resolution textural features. 
1: Gray level co-occurrence matrix approach. J. Geophys. Res., 
93, 12 663-12 681. 

Wiscombe, W. J., 1977: The delta-M method: Rapid yet accurate 
radiative flux calculations for strongly asymmetric phase func- 
tions. J. Atmos. Sci., 34, 1408-1422. 

-, 1979: Mie scattering calculations: Advances in tech- 
niques and fast, vector-speed computer codes. NCAR/TN- 
140+STR, 29 pp. 


