An improvement to high-spectral-resolution infrared cloud-top altitude retrievals is compared to existing retrieval methods and cloud lidar measurements. The new method, CO2 sorting, determines optimal channel pairs to which the CO2 slicing retrieval will be applied. The new retrieval is applied to aircraft Scanning High-Resolution Interferometer Sounder (S-HIS) measurements. The results are compared to existing passive retrieval methods and coincident Cloud Physics Lidar (CPL) measurements. It is demonstrated that when CO2 sorting is used to select channel pairs for CO2 slicing there is an improvement in the retrieved cloud heights when compared to the CPL for the optically thin clouds (total optical depths less than 1.0). For geometrically thick but tenuous clouds, the infrared retrieved cloud tops underestimated the cloud height, when compared to those of the CPL, by greater than 2.5 km. For these cases the cloud heights retrieved by the S-HIS correlated closely with the level at which the CPL-integrated cloud optical depth was approximately 1.0.