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Abstract

With a limited number of polynomial terms (so-called `streamsa), there are signi"cant di!erences between
a phase function and its Legendre polynomial expansion at large scattering angles, which are important to
satellite observations. This study "nds that while it takes hundreds of Legendre polynomial expansion terms
to simulate the backscattering portion of cloud phase functions accurately, the backscattered radiance
pattern can be accurately estimated with only 30 Legendre polynomial expansion terms by replacing the
regular Legendre polynomial expansion coe$cients by coe$cients obtained by a weighted singular-value
decomposition least-squares "tting procedure. Thus the computing time can be signi"cantly reduced. For
satellite remote-sensing purposes, the weighted least-squares Legendre polynomial "tting is an optimal
estimation of the cloud phase function. ( 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

In current discrete ordinate radiative transfer models [1,2], the scattering phase function of
particles is represented by just a few Legendre polynomial expansion terms. The expansion of the
phase function in Legendre polynomials has the advantage that in slab geometry the intensity can
be represented by a Fourier cosine series, and each expansion coe$cient (i.e. intensity component)
in the series satis"es an azimuthally independent, integro-di!erential radiative transfer equation.
There is one equation associated with each cosine term, and these equations are uncoupled and
mathematically identical. Thus, we can solve each of these equations with the same mathematical
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scheme. In the discrete-ordinate method the number of terms adopted for the expansion of the
phase function in Legendre polynomials is usually taken to be the same as the number of angular
points used to approximate the integral term in the radiative transfer equation with a quadrature
sum (i.e. the number of streams). Since the cpu-time for computing multiply-scattered radiances
with the discrete ordinate method is proportional to the third power of the number of streams,
accurate radiance computation is di$cult to achieve because of the computational burden.

For very small particles (i.e. size parameter much smaller than 1), the scattering phase function
can be accurately determined from just a few Legendre polynomial expansion terms. For moder-
ately larger particles, such as cloud droplets, the scattering phase function is strongly forward
peaked. The Legendre polynomial series converges very slowly as the number of terms increases
because of the d-function-like forward peak feature.

The Delta-M method [3], which takes advantage of the fact that the higher-order Legendre
polynomial expansion terms contribute primarily to the d-function-like forward peak [4], is a very
e$cient technique of removing the strong forward-scattering peak and reducing the error resulting
from use of a limited number of Legendre polynomial expansion terms (streams). The Delta-M
method conserves most moments of a phase function and it provides accurate #uxes for optically
thick media. But the Delta-M method can cause problems for radiance computations if there are
not enough terms in the expansion. For ice clouds hundreds of Legendre polynomial expansion
terms are required to avoid negative phase function values for large scattering angles as well as for
angles around 233. For optically thin media (optical depth less than 1), use of the exact phase
function for single and secondary scattering and a few moments of the phase function for multiple
scattering calculation gives good accuracy for the radiance "elds [5]. However, for optically thicker
media, this correction may not be self-consistent.

The biggest di!erences between a cloud phase function and its representation by a limited
number of Legendre polynomial expansion terms occur at large scattering angles, which are
important viewing angles for most satellite observations. The Legendre polynomial expansion
coe$cients are sensitive to phase function changes in the forward-scattering direction because the
values of the phase function as well as their derivatives are several orders of magnitude larger than
for the backward direction. With a limited number of terms, the Legendre polynomial expansion
may not provide the best estimate of a phase function.

In the next section we show that by replacing the usual coe$cients in the Legendre polynomial
expansions by new coe$cients computed from a weighted least-squares "tting procedure, we can
reduce the number of streams substantially while improving accuracy as well as computational
speed in radiance computations.

2. Improved Legendre polynomial approximation of the phase function:
Weighted singular-value decomposition (SVD) least-squares 5tting (d-5t)

2.1. Diwerences between d-xt and d-M

The Legendre polynomial expansion (or approximation) of a phase function is
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actual phase function that we want to approximate as well as possible, and # is the scattering
angle. A d-function with an integration value f requires an in"nite number of Legendre polynomial
expansion terms and all expansion coe$cients have the value f. To remove a d-function-like
forward peak, the d-M method replaces x
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For a limited number of terms N, the phase function computed from Eq. (3) can be very di!erent
from the actual phase function. For any given number of terms N, Eq. (3) is not the best Legendre
polynomial "tting of the phase function.

The objective of this study is to develop a robust technique which performs a least-squares "tting
to generate coe$cients c
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of the Legendre polynomial expansion that minimize the relative
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where #
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is the scattering angle, w
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is the weight for each scattering angle, p
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Legendre polynomial, N
453

is the number of streams needed in order to achieve a desired accuracy.
Here the expansion coe$cients c

l
are computed by solving the least-squares "tting problem
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If the weights for the forward-scattering angles (e.g., #(33) are set to zero, c
0

will not vanish
because the forward peak is automatically truncated (d-function at 03 scattering angle) with
truncation factor f"1!c

0
. The normalized phase function Pdv&*5(#) is
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The advantages of the above method are:

f better estimation of phase function at large scattering angles with small phase function values;
f easy removal of the forward peak by selecting small weights for scattering angles close to zero;
f ability to keep the lowest several moments if needed.
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2.2. Fitting the phase function

The procedure adopted to "t the phase function is:

f interpolate the actual phase function P
!#

(#) to 361 scattering angles #
i
with half-degree equal

intervals;
f select a forward peak removal angle #

c
. For #
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(#

c
, w
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"0;

f select an initial number of streams, N
453

, and compute all required Legendre polynomials
p
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(cos#
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) for l4N
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;

f solve the linear equations Le/Lc
l
"0 to derive the coe$cients c

l
with the singular-value

decomposition method;
f if e is larger than expected, increase N

453
and repeat the above procedures until e is small enough;

f determine the scaling factor f"1!c
0

and renormalize the phase function (i.e. divide all c
l
by

c
0
);

f adjust the extinction cross section b and single scattering albedo u: b@"1!uf,
u@"(1!f )u(1!uf )~1 to subtract the removed forward d-peak [4] from the scattering cross
section.

The results can then be compared with the usual Legendre polynomial expansion method as well as
the d-M method:

f Legendre polynomial expansion method: compute all the expansion coe$cients x
l
from Eq. (2),

and normalize the phase function;
f d-M method: set the scaling factor f"x

N453
, compute d-M coe$cients: (x

l
!x

N453
)/(1!x

N453
)

(Eq. (3)), and adjust the extinction cross section and the single scattering albedo as indicated
above.

Since the scattering phase function changes from 0.001 to R, it is crucial to treat the interpolation
and integration properly. The 1803 scattering angles are divided into 18 angular intervals and for
each interval we use 20 Lobatto quadrature points and weights for the integration. A four-point
Lagrange interpolation scheme is adopted to take the curvature into account.

Since elements of the matrix to be inverted for the least-squares "tting can di!er by several orders
of magnitude, the singular-value decomposition method is applied for the matrix inversion to
overcome possible computer accuracy problems. Eigenvalues which are 10~6 times smaller than
the largest eigenvalue are considered to be zero.

3. Comparisons of phase functions and re6ected radiance 5elds

3.1. Radiative transfer calculations

The radiances for the full phase functions are computed from Monte-Carlo simulations.
The radiances for the scaled phase functions are computed from a discrete ordinate method [2].
The incident #ux is n. Optical depth, q, is 3 and single scatter albedo, u, is 1 for the comparisons.
The solar zenith angle is 03. Similar studies are also performed for other values of q, u and sun
angle.
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3.2. Henyey}Greenstein phase function

The Legendre polynomial expansion of the Henyey}Greenstein (H}G) phase function is

P
HG
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where g is the asymmetry factor and gl is the lth expansion coe$cent as de"ned by Eq. (3). There are
three H}G phase functions with g"0.85 in the top panel of Fig. 1:

f the actual (or true) H}G phase function (N"R) (solid line);
f the d-"t to the H}G phase function (obtained by using N

453
"16 and by replacing the ususal

Legendre polynomial coe$cients gl by the coe$cients derived from the least-squares "ts)
(dashed line); and

f the Delta-M approximation to the H}G phase function (N"16 with d-M) (dotted line).

The middle panel shows the relative errors of the d-"t and the d-M phase functions. The
corresponding radiance "elds are provided in the lower panel.

At backscatter angles the values of the d-"t phase function are essentially the same as for the
actual (true) phase function. The d-M phase function #uctuates around the true phase function. The
relative error increases with the scattering angle (middle panel of Fig. 1).

The re#ected radiances resulting from use of the d-"t phase function are the same as the true
values resulting from use of the true phase function, while the radiances resulting from use of the
d-M phase function are slightly di!erent from the true radiances.

3.3. Double H}G phase function

Most particle scattering phase functions have both forward and backward peaks, which can be
simulated as a double H}G phase function:
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where g
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1
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2
(0). Here

g
1
"0.92, g

2
"!0.7, F"0.98.

The re#ected radiance errors for the d-"t method are almost zero (Fig. 2). The re#ected radiance
errors for d-M method can be as large as 20%.

3.4. Water cloud (Mie scattering) phase function

Fig. 3 is a typical water cloud phase function at near-infrared region with e!ective droplet size
10 lm. The side scattering area of the phase function was not properly represented with the d-M
method (28 terms of Legendre polynomial expansion). It also does not generate a backscattering
peak at the scattering angle of 1803. Replacing the Legendre usual expansion coe$cients by the
coe$cients obtained from use of the least-squares d-"t, the phase functions and radiances in the
backscatter directions are the same as the exact values.
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Fig. 1. H}G phase functions (g"0.85) (top panel), di!erences among them (middle panel) and radiances (bottom panel):
original phase function (solid), d-"t: 16 term Legendre polynomial "ts (dash), d-M: 16 moments of Legendre polynomial
expansion (dot).

3.5. Ice cloud scattering phase function

The ice cloud phase function [6] has a sharp forward peak, a 233 halo and a 1803 backscattering
peak (Fig. 4). Using the d-"t method, the phase function as well as the re#ected radiances are the
same as for the true phase function. Again, the d-M method failed to generate a good backward peak.
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Fig. 2. Double H}G phase functions (F"0.98, g
1
"0.92, g

2
"!0.7) (top panel) di!erences among them (middle

panel) and radiances (bottom panel): original phase function (solid), d-"t: 28 term Legendre polynomial "ts (dash),
d-M: 28 moments of Legendre polynomial expansion (dot).

4. Summary and discussions

A d-"t method is developed for fast and accurate computation of re#ected radiances. In contrast
to the d-M method, which conserves most of the Legendre moments of a phase function, the d-"t
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Fig. 3. Water cloud phase functions (for j"1.6 lm, R
%
"10 lm) (top panel) di!erences among them (middle panel) and

radiances (bottom panel): original phase function (solid), d-"t: 28 term Legendre polynomial "ts (dash), d-M: 28 moments
of Legendre polynomial expansion (dot).

method conserves only the lowest several moments and derives the rest of Legendre polynomial
coe$cients through a least-squares "tting procedure. The least-squares method is weighted by the
relative error for each scattering angle and thus has a good representation of the backscattering
angles.
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Fig. 4. Ice cloud phase functions (for j"0.55 lm, D
%
"20 lm) (top panel) di!erences among them (middle panel) and

radiances (bottom panel): original phase function (solid), d-"t: 28 term Legendre polynomial "ts (dash), d-M: 28 moments
of Legendre polynomial expansion (dot).

Using the new method, we can accurately compute the re#ected radiances with less than 30
streams for both water and ice clouds. This method is suitable for all optical depths.

A computer code which generates the least-squares "ts as well as all moments of Legendre
polynomial expansion for any given phase function is available to the community through our web
site at http://adm.larc.nasa.gov/yhu/phase"t.
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