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ABSTRACT

To overcome the complexities associated with combining or comparing multisensor data, a statistical

gridding algorithm is introduced for projecting data from their unique instrument domain to a uniform space–

time domain. The algorithm has two components: 1) a spatial gridding phase in which geophysical properties

are filtered on the basis of a set of criteria (e.g., time of day or viewing angle) and then aggregated into nearest-

neighbor clusters as defined by equal-angle grid cells and 2) a temporal gridding phase in which daily statistics

are calculated per grid cell from which longer time-aggregate statistics are derived. The sensitivity of the

gridding algorithm is demonstrated using a month (1–31 August 2009) of level 2 Aqua/Moderate Resolution

Imaging Spectroradiometer (MODIS) cloud-top pressure (CTP) retrievals as an example. Algorithm sensi-

tivity is tested for grid size, number of days in the definition of a time average, viewing angle, and minimum

number of observations per grid cell per day. The average CTP for high-level clouds from a number of

different polar-orbiting instruments are compared on a 18 3 18 global grid. With the data projected onto

a single grid, differences in CTP retrieval algorithms are highlighted. The authors conclude that this gridding

algorithm greatly facilitates the intercomparison of CTP (or any other geophysical parameter) and algorithms

in a dynamic environment. Its simplicity lends transparency to understanding the behavior of a given pa-

rameter and makes it useful for both research and operational use.

1. Introduction

Geophysical properties, such as atmospheric and

surface temperatures, water vapor, aerosols, and clouds,

have been retrieved operationally from satellite mea-

surements in both geostationary (regional) and polar

(global) orbits for more than three decades. While this

potentially allows large-scale, long-term analysis, issues

arise when comparing measurements from different

time periods and sensors. Data combination and in-

tercomparison efforts become difficult because of dif-

ferences in technology, horizontal and vertical resolution,

satellite overpass time, sampling frequency, and retrieval

algorithm design strategies, among others. These diffi-

culties are especially acute in climate studies that rely on

decades of continuous global data records from a variety

of satellite sensors.

A number of approaches to enhance data continuity

exist. One is the creation of instrument-specific gridded

aggregates. Historically, georeferenced calibrated sen-

sor measurements at native instrument resolution are

referred to as level 1B (L1B), the retrieved geophysical

properties at instrument resolution as level 2 (L2), and

the geophysical properties gridded and aggregated over

a time period as level 3 (L3). The latter is useful, not only

because of lower data volumes and improved data ac-

cessibility, but also as a statistical description of the re-

trieved properties. The Moderate Resolution Imaging

Spectroradiometer (MODIS) L3 product, for example,
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contains hundreds of statistical data records on a 18 3 18
grid of L2 properties, such as aerosols, water vapor,

clouds, and atmospheric profiles, in daily, 8-day, and

monthly time aggregates (King et al. 2003).With close to

1000 records, however, the monthly product can easily

become too cumbersome to work with. In addition, it

may still notmeet all research needs because of the static

definition of grid size, time, and type of statistics, for

example, mean instead of mode. There is also the pos-

sibility that a reprocessing of the entire product series

becomes necessary as new knowledge on the statisti-

cal nature of a parameter (e.g., nonnormal behavior) is

gained. This is both costly and complicated. This said,

the MODIS L3 product is perhaps one of the most com-

prehensive to date.

Clouds play a major role in weather and climate pat-

terns and are widely studied as indicators of change and

trends (Ramanathan et al. 1989; Liou et al. 1993). The

development of globally gridded cloud climatologies to

date is either multi- or single sensor cloud properties

sampled to a uniform grid. Cloud climatologies include,

but are not limited to, the International Satellite Cloud

Climatology Project (ISCCP; Schiffer and Rossow 1983),

the University of Wisconsin High Resolution Infrared

Radiometer Sounder (UWHIRS;Wylie andMenzel 1999;

Wylie et al. 2005), the PathfinderAtmospheres-Extended

(PATMOS-x; Heidinger and Pavolonis 2009), the Tele-

vision and Infrared Observation Satellite (TIROS)-N

Operational Vertical Sounder (TOVS) Path-B mea-

surements (Stubenrauch et al. 2006), and another based

on TOVS (Susskind et al. 1997). While there may be

uniformity of data in a single climatology, the same

issues arise when comparing or combining different

climatologies. Limitations in temporal scope, lack of

transparency as well as consensus among research teams

on gridding requirements (pertaining to grid size, type of

statistic, time period, etc.) make data comparison efforts

problematic.

There are examples in the literature where these

stated problems are partly overcome by resampling dif-

ferent gridded cloud products to a common geographic

grid using interpolation or zonal statistics (e.g., Hou

et al. 1993; Wang and Rossow 1995; Jin et al. 1996;

Stubenrauch et al. 1999 a,b,c; Hahn et al. 2001; Pavolonis

and Key 2003; Thomas et al. 2004; Zhang et al. 2005).

However, resampling a statistical dataset to a different

space–time configuration introduces errors that are of-

ten untraceable in the final solution. Moreover, unknown

errors may incorrectly depict trends.

In this paper, we propose a different approach. In-

stead of focusing on the development of a static global

gridded data product, our goal is to develop a method

with which any georeferenced dataset (independent of

source instrument) of land, ocean, or atmosphere, at any

level of processing (L1B/2), can be projected from its

nonuniform instrument domain to a uniform space–time

domain. As such, the gridded output is tailored to spe-

cific research needs, created for a user-defined (not

product-defined) length of time, from any suite of instru-

ments relevant to the study. To be clear, we do not at-

tempt in any way to criticize the strengths and weaknesses

of existing climatologies or propose the replacement of

L3 products in this paper. Our intent is simply to offer

a different approach to a long-standing problem.

The implementation of a gridding algorithm, as op-

posed to relying on static gridded products, has distinct

advantages: (i) any geophysical property of interest at

any level of processing can be projected to the space–time

grid; (ii) all research relevant data are subject to the same

set of filters and projected onto a common geographic

grid; (iii) there are no predefined limitations on the type of

parameter or statistic, grid size, time period, or number of

gridded properties—these are all user-defined; (iv) the al-

gorithm can be run as research needs arise, thereby re-

ducing the need to aggregate and store L3 products; and (v)

the algorithm is straightforward and transparent for appli-

cation in both research and operational environments.

The gridding algorithm proposed here has two

components. First is the ‘‘space’’ gridding phase where

geophysical properties are filtered based on a set of cri-

teria (e.g., time of day, viewing angle) and then aggre-

gated into nearest-neighbor clusters as defined by

equal-angle grid cells. Second is the ‘‘time’’ gridding

phase where daily statistics are built per grid cell from

which longer time-aggregate statistics are derived.

The data used in this study are discussed in section 2.

The space–time gridding algorithm is described in sec-

tion 3. For clarification, the gridding of L2 MODIS

cloud-top pressure (CTP) retrievals is used as an algo-

rithm application example throughout. However, the

reader should bear in mind that CTP can be substituted

with any L1B/2 geophysical parameter. Sections 4a and

4b detail the approach adopted in this paper to charac-

terize the space–time algorithm and test its sensitivities

to sample size. The latter is determined by gridcell size,

aggregate time period, and viewing angle limitations.

Discussion of results follows in section 4c and a com-

parison is made of CTP monthly gridded averages from

four polar-orbiting instruments in section 5. Conclu-

sions are reached in section 6 followed by recom-

mendations for future research.

2. Data

All data processed in this paper are for the time period

1–31August 2009 and from instruments on polar-orbiting
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platforms that obtain near global coverage in approxi-

mately two days.

a. Multispectral imagers

The Advanced Very High Resolution Radiometer

(AVHRR) on Meteorological Operation-A (MetOp-A)

senses in three visible (VIS) to near-infrared (NIR) (0.5–

1.64 mm) and three IR spectral bands (3.55–12.5 mm).

The MetOp-A orbit has a local morning crossing time of

0930. AVHRR cloud properties are retrieved with the

PATMOS-x cloud retrieval algorithm (Heidinger and

Pavolonis 2009). Globally gridded PATMOS-x level 2

retrieval products are available on a 0.18 grid from the

Cooperative Institute for Meteorological Satellite Stud-

ies (CIMSS; online at cimss.ssec.wisc.edu/patmosx). The

PATMOS-x gridding algorithm employs nearest-neighbor

logic with the result that there is only one CTP re-

trieval per 0.18 3 0.18 grid cell with no statistical data

abstraction.

The MODIS on Aqua is sensing in 36 spectral bands

ranging from 0.6 to 14.2 mm. The Aqua platform has

a local afternoon crossing time of 1330 and is part of

the A-Train constellation of sensors, which include the

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) and CloudSat. The opera-

tional 5-km level 2 cloud product (MYD06) is described

in the literature (King et al. 2003; Platnick et al. 2003;

Menzel et al. 2008). MODIS has a swath dimension of

2330 km with a viewing angle limit of 65.38. This results
in 406 level 2 pixels across track per scan line. The

characterization and sensitivity studies in this paper are

based on the MODIS level 2 cloud retrieval product

(version 5). Data are available from the National Aero-

nautics and Space Administration (NASA) Goddard

Space Flight Center’s level 1 and Atmosphere Archive

and Distribution System (LAADS; online at ladsweb.

nascom.nasa.gov).

b. Hyperspectral sounder

The Atmospheric Infrared Sounder (AIRS) is moun-

ted on Aqua and measures emitted infrared radiation in

2378 spectral channels spanning the range from 3.7 to

15 mm (Aumann et al. 2003; Chahine et al. 2006). AIRS

and MODIS are thus coincident in time. The level 2 re-

trieval algorithm is described by Susskind et al. (2003).

AIRS radiance observations as well as the standard level

2 retrieval products (that include CTP retrievals along

with surface properties and the atmospheric profiles of

temperature and gases) are found at the NASAGoddard

Earth Sciences Data and Information Services Center

(GESDISC, available online at daac.gsfc.nasa.gov). AIRS

CTP retrievals are available at 45 km3 45 km horizontal

resolution, or roughly 0.48 3 0.48. Unlike MODIS, AIRS

has a viewing angle limit of 48.958. This together with the
reduced footprint size leaves 90 fields of view (FOV)

across track per scan line.

c. Lidar

The Cloud-Aerosol Lidar with Orthogonal Polariza-

tion (CALIOP; Winker et al. 2004, 2007), onboard the

CALIPSO, is also an A-Train instrument. Its local

crossing time lags 1–2 min behind that of Aqua. The

level 2 cloud-layer product constitutes vertical profiles

of clouds retrieved at 5-km resolution. However, unlike

the passive sensors, there is only a single footprint across

track. A strong advantage of CALIOP is that it has a

very high vertical resolution of 60 m (Vaughan et al.

2004; available online at www-calipso.larc.nasa.gov/).

This makes it ideal for validation of retrievals from

passive sensors [see Stein et al. (2011) for a comparison

of MODIS ice cloud properties with CloudSat].

3. Space–time algorithm description

From here on we refer to any space-based measure-

ment of a geophysical parameter, be it radiances, retrieved

clouds, surface, or layered thermodynamic properties,

simply as ‘‘measurement.’’ Moreover, we make the dis-

tinction between ‘‘measurement’’ and ‘‘observation’’ since

a geophysical parameter may not always be measured at

each observation opportunity in native instrument res-

olution (or FOV).

The space–time algorithm described here allows daily

measurements from any space-based instrument (polar-

orbiting or geostationary) to be gridded to an n8 3 n8
equal-angle grid (n . 0). A daily statistic is calculated

for each grid cell from which a time aggregate can be

generated to neutralize sampling differences among in-

strument measurements. The algorithm consists of two

phases, the first of which is the physical data resampling

phase, or ‘‘space gridding,’’ where measurements are

projected from their instrument observation grid to

a uniform equal-angle grid. All measurements are re-

tained in this phase and clustered into nearest-neighbor

sets according to the specified gridcell size. (Note that

this is unlike the single value that is retained per grid

cell in more traditional gridding routines.) Second, the

statistical data reduction phase, or ‘‘time gridding,’’ is

where parameter-specific daily statistics are calculated

for each grid cell, or nearest-neighbor set. As soon as the

desired number of days is accumulated, a time-aggregate

statistical grid is calculated.

By dividing the gridding routine into two distinct

phases, opportunity is created for statistical data ex-

ploration, calculation of compound statistics (i.e., com-

bining more than one measurement in calculation of
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descriptive statistics), or higher-order statistical mo-

ments. In this sense the space–time grid is first and fore-

most an analysis space with the time-aggregate grid as the

final output (or data product).

Below we discuss the space–time algorithm in more

detail and illustrate aspects of it by using MODIS CTP

retrievals (section 2a) as an algorithm application. Ap-

plication to other geophysical parameters will be the

subject of future work.

a. Space gridding

One of the main advantages of gridding is data re-

duction.However, premature data reduction can severely

limit or misdirect research. Thus, an important first step

in any gridding routine is to carefully assess the research

requirements and define rules for filtering the measure-

ments. For example, in this paper we demonstrate space–

time gridding for daytime high clouds retrieved from

near-nadir observations. The corresponding filtering cri-

teria are sun zenith angle# 848 (daytime), CTP retrieval

#440 hPa (high clouds), and satellite zenith angle # 328
(near-nadir observations). Note that these criteria can be

provided from any coincident ancillary datasets; they

do not have to depend exclusively on the measurements.

Once the filters have been applied, only the measure-

ments retained are gridded. This is an important con-

sideration: from this step onward any opportunity for

inquiry that relies on measurements beyond those that

have been filtered by the criteria will be lost. However,

if a complete set of criteria is defined, then statistical

analysis of the data in gridded space will be more de-

scriptive and meaningful.

Once filtered, the measurements are projected from

their native instrument resolution to a uniform gridded

resolution. The method developed for the space–time

algorithm is referred to as ‘‘snap-to-grid.’’ Each mea-

surement is mapped to its nearest-neighbor (NN) grid

cell (sample size is at least one measurement). This dif-

fers from the standard approach where each grid cell is

assigned its NN measurement (sample size is one). The

set of measurements accumulated per grid cell makes

statistical data exploration possible. This is useful for

gaining insight that will ultimately inform phase two

of the algorithm (section 3b). Beyond the standard de-

scriptive measures—such as mean, variance, mode, and

spread—one can gain insight into probable (common)

or even possible (rare) scenarios at this stage. Moreover,

knowledge of the sample distribution plus degree of lin-

earity and entropy per grid cell can greatly enhance

gridded analysis.

The snap-to-grid routine is performed in three dis-

tinct steps. The geographic coordinate (x, y) in latitude–

longitude degrees (with fx 2 R: –90, x 90g and fy 2 R:

–180 , y , 180g) of each measurement is 1) converted

to a nonnegative real number set, r1 5 x 1 90, fr1 2 R:

0, r1, 180g and r25 y1 180, fr2 2R: 0, r2, 360g; 2)
adjusted according to the gridcell size (gsize) in units

(degrees) with fgsize 2 R: 0 , gsizeg, as follows r01 5
r1/gsize and r02 5 r2/gsize; and 3) rounded to the nearest

integer such that fr01 2Z: 0, r01 , 180/gsizeg and fr02 2Z:

0 , r02 , 360/gsizeg (R and Z are the real and integer

number sets, respectively). Note that the output gridded

coordinate point (r 01, r
0
2) may not be unique. Several

geographic coordinates may map onto the same gridded

coordinate. As such, a set of nearest-neighbor mea-

surements is accumulated for each grid cell without any

distance calculation. This greatly simplifies the algorithm.

A single 3D grid is calculated per geophysical pa-

rameter per day. The grid has dimensions [nlat3 nlon3
nobs], where nlat and nlon indicate the latitude–

longitude dimensions respectively, and nobs the num-

ber of observations. The magnitude of nlat and nlon are

determined by the user-specified grid size; for example,

gsize 5 0.58 results in nlat 5 360 and nlon 5 720. The

magnitude of nobs varies on the one handwith gsize, and

on the other with source instrument spatial and tempo-

ral resolution. A coarser output grid resolution (larger

gsize values) results in a higher nobs value. Alterna-

tively, a coarser input grid resolution (larger FOV areas)

results in a lower nobs value. Similarly, a higher fre-

quency of measurements will result in a higher nobs

value. The magnitude of nobs can be greater than or

equal to the number of measurements (nmes) per grid

cell (nmes # nobs). The magnitude of nmes, in turn, is

simply the number of nonzero values in the gridcell

vector (with length nobs). The reason why nobs may in

some instances not be equal to nmes is that a geophysical

parameter is not always measured (retrieved) at each

instrument observation; for example, a cloud parameter

is not inferred for clear-sky conditions or a land surface

temperature is not retrieved in the presence of clouds.

A daily grid has a finite set of cells where nobs 5 0.

This may be the result of the applied criteria (e.g., cells

over polar nighttime regions will be empty if a daytime

criteria was specified), or simply due to limitations in

instrument coverage. A polar-orbiting instrument such

as MODIS samples roughly 70% of the globe per day,

but this depends on the swath width. The unsampled

portion is what leads to empty cells in a daily grid.

Note that no statistical calculations are made at this

phase of the space–time algorithm. It serves strictly as

a physical data resampling routine. The only data re-

duction that occurs at this phase is due to the filtering

routines. All data that pass the filters are resampled and

stored for statistical calculation during the next phase.

But all data that are filtered out are discarded, even the

258 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 52



ancillary data are discarded. This simplifies data han-

dling routines and speeds up enquiry during the next

phase. For the algorithm application we put forward in

this paper, 31 grids were computed, one for each day of

August 2009 at 18 3 18 resolution.

b. Time gridding

Statistical analysis is performed during this phase.

Where measurements from different times of the day

are accumulated per grid cell during phase one (e.g., as

a result of two consecutive orbits, or inclusion of mea-

surements from both descending and ascending orbits),

they are statistically summarized into a single daily value

during phase two. The advantage of having a set of

measurements per grid cell should now become appar-

ent; for instance, it allows the ability to calculate any

number of daily statistics, for example, mean, mode, and

standard deviation. Traditionally, daily gridded level 3

products contain no statistical information; they serve

only a physical data reduction purpose. Statistical anal-

ysis with daily level 3 products becomes possible only

once they are aggregated over time. We argue, however,

that premature data reduction has the potential to not

only limit scientific inquiry but also introduce small errors

that enlarge over time. Careful handling of statistical

data description from the outset has the potential to re-

duce data misrepresentation and enhance understanding

of observed trends and patterns.

In calculating the daily statistical grids, the dimension

of a space–time grid is initially reduced from [nlat 3
nlon 3 nobs] to [nlat 3 nlon]. However, the daily sta-

tistical grids stacked together form a second 3D grid

with dimensions [nlat 3 nlon 3 ndays] (with ndays as

the number of days). Once an aggregate time statistic

is calculated per cell, the final output grid has dimen-

sion [nlat 3 nlon]. In the area covered by the measure-

ments, the time statistic will be calculated from at least

one daily statistic, that is, ndays $ 1. It remains to de-

termine how the magnitude of ndays affects the final

result.

4. Algorithm application and sensitivity analysis

a. Weighted time average

The scope and flexibility of the space–time approach

is illustrated by calculating a compound weighted time

average of CTP. Note, however, that this is just an ex-

ample since any descriptive statistic, model, or higher-

order moment can be calculated for each daily grid cell

since nobs . 1 for each populated cell. The compound

weighted time average is provided by

CTPm 5

�
days

(%3CTPd)

�
days

(%)
5

�
days

�nmes

nobs
3CTPd

�

�
days

�nmes

nobs

� , (1)

where CTPm is the weighted time average of CTP and

CTPd the daily average of CTP. In this case, the nmes#

nobs since a cloud property may not always be inferred

for a given FOV (implying clear sky). This equation

calculates a weighted time average by combining daily

CTP averages with percentage cloud cover as defined by

the fraction nmes/nobs. This follows the line of argu-

ment that uncertainty in the final output is reducedwhen

the statistic is weighed by the fraction of occurrence. In

other words, in the example presented here the time-

aggregate CTP average per grid cell is not just an aver-

age of averages but reflects the percentage cloud cover

such that the end result is dominated by CTP averages

from predominantly cloudy days (thus minimizing con-

tribution from predominantly clear days). An alterna-

tive approach could be to weight the daily averages

by nmes only, which will give grid cells with a high

number of measurements (i.e., those in the center of

orbit tracks) a stronger weight in the time average. Far

from being prescriptive, Eq. (1) is merely an illustration

of the algorithm scope given the proposed gridding

configuration.

b. Sensitivity to sample size

Statistical analysis is sensitive to sample size; an av-

erage calculated from a small sample is more sensitive

(less robust) to outliers than those calculated from a

large sample. In gridded space it is important to main-

tain statistical robustness since the scale of geophysical

analysis makes it easy for small, localized errors to go

undetected initially but to accumulate over space and

time into questionable trends.

We characterize this sensitivity to sample size by eval-

uating the space–time algorithm response to minimum

sample size thresholds. In addition, we demonstrate how

sample size, and by implication the space–time product,

is affected by definitions of gridcell size, time period of

statistical aggregate, and viewing angle limitations.

Given a polar-orbiting instrument configuration, grid

cells on instrument swath edges (high viewing angles)

contain fewer observations than those at swath center

(near nadir). This can cause statistical errors that are

exaggerated when days are aggregated into months. For

example, a grid cell on the edge of an orbit swath for one

day could have nobs 5 3 and nmes 5 1. The same grid

cell could be in the center of an orbit swath for a differ-

ent day, ending up with nobs 5 100 and nmes 5 12.
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Given Eq. (1), the daily weighted average calculated

for the edge cell will make a larger contribution to the

monthly CTPm statistic than the center cell, even though

a single measurement determined the average. This is

addressed by setting a minimum limit for nobs to mini-

mize the introduction of geographical misrepresentation

(i.e., when a large area is assumed to be homogenously

defined by a small isolated area). In single instrument

studies, repeated experimentation can lead investigators

to identify a static threshold for nobs, for example, 10.

However, with multi-instrument comparisons a single

static threshold can easily become meaningless since

nobs varies greatly depending on the value of gsize

and source instrument spatial and temporal resolution.

Thus we address two questions. What is the minimum

threshold for nobs to ensure a statistically robust sample

size for a grid cell? And, is there an objective method

with which to determine such a threshold?

Four different nobs thresholds are tested. They are

the following: 1) nobs . 0 (all grid cells are retained no

matter how low their nobs), 2) nobs. 10 (static threshold),

3) nobs.mean(nobs)2 SD(nobs) [grid cells omittedwith

nobs lower than 16%—half of one standard deviation

(SD)—of the mean nobs accumulated in a month], and

last 4) nobs. mean(nobs)2 [1.53 SD(nobs)] (grid cells

omitted with nobs lower than 3.5%—half of 1.5 SD— of

the mean nobs accumulated in a month).

c. Results and discussion

The space–time algorithm is demonstrated in this

section using a specific application of CTP, namely

daytime (sun zenith angle # 848) high cloud CTP re-

trievals (CTP # 440 hPa) from near-nadir (viewing

angle # 328) Aqua/MODIS measurements (section 2a)

gridded to an equal-angle grid of 18 3 18 resolution and

time averaged over the period 1–31 August 2009. Daily

CTP averages are calculated that are then weighed

based on the percentage cloudiness and averaged for a

month according to Eq. (1). Even though this applica-

tion is limited to daytime measurements that strictly

do not constitute a full ‘‘day’’ of satellite observations

(polar-orbiting sensors have both day- and nighttime

orbits), we maintain reference to ‘‘daily grids’’ for the

sake of simplicity. Note that all quantitative results

communicated in this section refer to this application,

unless otherwise specified.

On a single day, 288 files of 5 3 5 km MODIS mea-

surements of potential CTP are generated. Each file

contains 270 3 406 observations. Because of the polar-

orbiting configuration of Aqua, the number of MODIS

observations per equal-angle 18 3 18 grid cell has a

strong latitudinal dependence; that is, the higher lati-

tudes (.508) are sampled more frequently than the lower

latitudes (,508). For the application, a grid cell at (08N,

08E) has a total of 3603 daytime MODIS observations

for the month of August 2009, while a grid cell totals

4292 at (608N, 08E) and 12 180 at (808N, 08E). This could
raise a concern that differences in sample size may cause

higher degrees of smoothing in the poles than in the

lower latitudes. We contend that a limit on the maxi-

mum sample size can reduce this problem. Such a limit is

implemented in the space–time algorithm by restricting

calculation of statistics to a single day. As a result, a time

statistic then becomes the accumulation of single daily

statistics for a single day and therefore limits the expo-

nential accumulation of observations in the poles that

can affect the statistical integrity of global results. Other

factors that limit the number of observations accumu-

lated per grid cell per day are the filters applied at the

time of gridding, for example, time of day and viewing

angle restrictions.

In addition to addressing the maximum sample size,

limiting the minimum number of observations (nobs)

per grid cell per day is also a useful tactic to prevent

statistical instability. Three minimum threshold limits

were tested for nobs (Table 1), such that a daily average

was calculated for a grid cell if and only if the total ob-

servations on that day exceeded the threshold. With the

average number of MODIS observations per grid cell

per day about 280 (maximum 5 501) on a 18 3 18 grid,

TABLE 1. Mean and SD for the daytime high CTP difference between test 3 and tests 1, 2, and 4, respectively. Both global (908N, 1808;
908S, 1808) and regional (158N, 408E; 158S, 1008E) statistics are shown. The regional area corresponds to a part of the Indian Ocean

displayed in Fig. 1e. The tests are based on minimum threshold values for the number of observations (nobs) accumulated per grid cell

during the spatial gridding phase.

Test

A grid cell must

have at least: Threshold

Global mean

difference 6SD

Regional mean

difference 6SD

1 One observation nobs . 0 1.44 617.51 2.07 621.46

2 10 observations nobs . 10 1.48 617.93 2.09 620.09

3 Lowest 16% of the monthly mean

observations for that cell

nobs . mean(nobs) 2 [1 3 SD(nobs)] 0 0

4 Lowest 3.5% of the monthly mean

observations for that cell

nobs . mean(nobs) 2 [1.5 3 SD(nobs)] 0.62 611.55 1.22 615.78
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a threshold of 10 is less than 1% of the nobs for most

cells. The AIRS operational L2 product, on the other

hand, has a coarser spatial resolution and averages 26

observations per cell per day (maximum 5 50) on the

same grid. A threshold of 10 is about 50% of the average

and will thus severely hinder daily global analysis by

removing too many cells from consideration. This

demonstrates that a static threshold can severely com-

promise multisensor comparisons. However, a dynamic

threshold that depends on a statistical relationship (e.g.,

tests 3 and 4 from Table 1) is independent of sensor

resolution and thus more useful.

The total number of days in a month where nobs

passed the threshold test is displayed for the three values

in Figs. 1a–d, respectively. The higher the threshold, the

fewer the available daily values; test 1 (that includes all

cells in calculation) has overall the highest values for

ndays, and test 3 (that filters out cells with the lowest

16% of nobs) overall the lowest ndays values. However,

variation in ndays is not limited to the threshold mag-

nitude since ndays can vary as much as four days from

cell to cell across an orbit track in the low latitudes for

a single threshold. This is the result of orbital sampling

and shifting from day to day.

When compared to test 1, fewer than 27% of the cells

of test 2 register any difference (Figs. 1a,b). However,

given test 3, 53% of the cells have a difference of two or

more days and 36% of the cells given test 4. Although

the use of a minimum threshold reduces the number of

days with which a time statistic can be calculated, the

alternative of applying no threshold at all has a high

probability of introducing geophysical errors in the re-

sults. Conceptually, the scenario in which a small spatial

measurement (e.g., 5 km 3 5 km) determines the grid

value for a large uniform area of (e.g., 100 km3 100 km)

should be avoided, and statistically, the reasons should

become apparent in the discussions below.

The weighted monthly CTP average (Fig. 2a) follows

the familiar geographic pattern also detected byWylie and

Menzel (1999) and Wylie et al. (2005). The highest clouds

(.200 hPa) are found concentrated in the intertropical

convergence zone (ITCZ) with high clouds between 200

and 440 hPa in the midlatitude storm belts of the North

Atlantic, North Pacific, and Antarctic Oceans. No high

clouds were detected for the month of August 2009 in the

subtropical high pressure zones over the oceans and ter-

restrial subtropical deserts. These areas are typically char-

acterized as having low cloud cover (Wylie et al. 2005).

FIG. 1. The number of days (ndays) with daily averages for 1–31 Aug 2009 as a result of applying four different

thresholds to number of observations (see Table 1). (a) Test 1, (b) test 2, (c) test 3, and (d) test 4. White areas denote

no data due to the daytime filter applied. This applies to all subsequent figures.
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Themonthly average difference between each test 2–4

and test 1 is displayed in Figs. 2b–d. Test 2 has the lowest

difference and test 3 the highest. Furthermore, it is clear

that applying a minimum threshold filter removes most

cells from the edges of orbit tracks (this is especially clear

in Figs. 2c,d). To illustrate how a nobs threshold can affect

the spatial coverage of a time statistic, daytime CTP av-

erages were calculated for 81.6% of the grid cells with test

1 and 80.3% for test 3. Thus, although a minimum nobs

threshold removes cells from consideration, the effect on

the time-aggregate spatial coverage appears to beminimal.

Detailed differences in the time average for the four

thresholds can be seen for the Indian Ocean (58N, 408E)
to (158S, 1408E) in Figs. 2e,f. The difference of test 3 and

4 with test 1 are displayed as either (i) increased (,0),

(ii) decreased (.0), or (iii) remained the same (50) in

Figs. 2e,f. The diagonal stripes visible in Fig. 2f may be

a result of the shifting orbits from one day to the next.

Overall, though, the effect appears to be random and

localized. These results are for a month of observations

given a specific application. However, results may differ

with different time intervals, statistics, geophysical pa-

rameters, source instruments, and grid resolutions. De-

spite that, it remains desirable to retain as many of the

observations as possible, while removing outliers, to

ensure a robust sample size in the calculation of a time

statistic for each grid cell. Test 3 seems to remove too

many days from the monthly average calculation (Fig. 1).

Test 4 seems to be the most useful since it removes the

outliers (cells with the lowest 3.5% of nobs) without

FIG. 2. Sensitivity tominimumnumber of observations.Weighted time averages of daytime high CTP for 1–31Aug

2009 on a 18 3 18 grid with (a) test 1, (b) test 2, (c) test 3, and (d) test 4 (see Table 1). Differences between (e) tests 1

and 3, as well as (f) tests 1 and 4 are shown over the IndianOcean in the region (58N, 408E)–(158S, 1408E). Black areas
denote absence of high clouds. This applies to all subsequent figures.
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severely compromising the total number of daily aver-

ages (Fig. 1). In addition, it is independent of instrument

spatial resolution unlike test 2.

As was demonstrated in Figs. 2b–d, the monthly cell

statistics can be sensitive to nobs thresholds that affect

the sample size. For test 3, the difference with test 1 is as

high as 288 hPa and globally averages 2 hPa (Table 1).

Other factors that affect sample size in the CTP ap-

plication is gridcell size, viewing angle limitations, and

number of days in the time-aggregate statistic. The space–

time algorithm sensitivity to variations in these three

variables is discussed below.

The Aqua/MODIS has a 16-day repeat cycle. Given

the Gregorian calendar, a month ranges between 28 and

31 days and therefore does not readily coincide with this

cycle. We test here the sensitivity of monthly CTP grid-

ded averages to two time aggregates: 32 days versus a

month (31 days in the case of August).

The total number of observations per 18 3 18 grid cell

is displayed for 31 (Fig. 3a) and 32 days (Fig. 3b), re-

spectively. In the latter no orbit tracks are visible since

the time period coincides exactly with two Aqua repeat

cycles. This means that all grid cells in a latitude (zonal)

band are sampled equally, with a total observations per

grid cell that ranges from 4000 to 4500 in the low lati-

tudes. This total number of observations per grid cell stays

near 4000 for 31 days (Fig. 3a). However, upon closer

inspection, orbital tracks are visible with a difference of up

FIG. 3. Sensitivity to the definition of time in the calculation of a weighted time average. (a),(b) Total number of

MODIS level 2 observations (5 km3 5 km) accumulated per 18 3 18 grid cell. (c),(d) Weighted average of daytime

high CTP on a 18 3 18 grid with sample size threshold 4 (see Table 1). (e),(f) Zoomed-in regional differences over the

Pacific of time averaged highCTP for 158N–158S and 1408–808W.All the figures on the left are for 1–31Aug 2009, and

those on the right are for 1 Aug–1 Sep 2009.
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to 1000 (3500–4500) between adjacent grid cells. While it

is tempting towant to adapt amultiple of the 16-day cycle

for global statistics, the benefit is not apparent when the

weighted CTP average is considered in Figs. 3c,d; the

differences remain small with a global mean difference

20.22 hPa and standard deviation 17 hPa. These small

differences are more evident when the view is zoomed

in to a region over the eastern tropical Pacific (158N,

1408W)–(158S, 808W) (Figs. 3e,f). Of the 1891 grid cells in

this region, averages are calculated for the same number

of cells with only a few cells registering a change in av-

erage value. Note that the regional difference visible here

will drift from month to month because of satellite orbit

changes. For the sake of spatial coverage and perhaps an

ease of analysis description, Gregorian months are useful

statistical units that donot introduce any obvious artificial

features despite the initial uneven sampling.

The MODIS instrument has a scanning pattern of

6558. When we restrict our analysis to only those mea-

surements from observations within 6328 of nadir, we
exclude a significant number of measurements. The ra-

tionale for excluding them is based on the fact that sat-

ellite observations at high viewing angles will be biased

toward larger cloud fractions; this is caused by the in-

crease in pixel size with viewing angle. Just as in Fig. 3,

when the number of observations increases (as they do

when the viewing angle restriction is removed), the

spatial coverage increases and the time average de-

creases (because of larger sample sizes). This effect is

noticeable in Fig. 4. The weighted time average of CTP

is displayed for a region (308N, 1808W)–(308S, 808W)

with the near-nadir restriction (Fig. 4a) as well as for all

viewing angles (Fig. 4b). The former has zero values for

13.5% of all cells with a spatial average of the remaining

cells at 266 hPa. The latter, on the other hand, has

0 values for only 5% with a 250-hPa spatial average of

the remaining cells. We conclude that the gridding al-

gorithm is highly sensitive to viewing angle restrictions.

Although the monthly CTP average of all retrievals

(with no view angle filtering) produces a smooth result

without the enhancement of features due to orbital sam-

pling or gaps (e.g., as displayed in Fig. 4a), it is unrealistic

to assume that this could be applied to all instruments as

the scanning pattern varies greatly from instrument to in-

strument (e.g., AIRS has a scanning pattern of 648.958).
The goal with the space–time gridding algorithm is to

produce a tool with which to process retrievals from

any polar-orbiting instrument for easy multisensor

comparisons. A near-nadir criterion (viewing angle #

328) is not only scientifically conservative but also ap-

plicable to any cross-track scanning instrument. But

as demonstrated here, a limit of 328 may be too aggres-

sive for CTP gridding alone (where cloud fraction is

irrelevant). A value .328 but less than the smallest

instrument viewing angle may serve a multisensor CTP

application better.

Finally, the sensitivity of the gridding algorithm is

tested to differences in grid size. The time average CTP

on a 18 3 18 grid is compared to that on a 28 3 28 grid
(Fig. 5). A larger grid cell will have a higher sample size,

so a degree of smoothing will occur. This is noticeable

when focusing the analysis on an eastern Pacific region

(308N, 1808)–(308S, 808W) (Figs. 5c,d). Small regional

features disappear when the grid size is enlarged. How-

ever, on a global scale many of the large features are in-

sensitive to grid size. The most obvious sensitivity to the

grid size is the degree of spatial coverage.Most of the data

gaps in Fig. 5a disappear when the grid size is doubled in

Fig. 5b. Upon closer inspection, this has the additional

effect that new features are introduced on a coarser scale

that are not visible on a finer scale. We are in no position

to make recommendations as to the accuracy of one over

the other, but can merely conclude that globally gridded

statistics are very sensitive to grid size. Careful attention

should be paid to this when developing a test case or im-

plementing a gridcell size for analysis in real time.

FIG. 4. Sensitivity to viewing angle.Weighted time average of daytime high CTP during 1–31Aug 2009 on a 18 3 18
grid over the Pacific (308N, 1808W)–(308S, 808W) with threshold 4 applied (see Table 1) for (a) viewing angles# 328,
and (b) all viewing angles.
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We have demonstrated here some of the spatial and

temporal sensitivities of a new type of geophysical

space–time gridding algorithm with MODIS CTP re-

trievals as an example application. Any gridding criteria

or variable that causes the sample size to increase per

grid cell will result in a lower dynamic range of the

gridded measurement and smoother geophysical fea-

tures in final product. The sensitivity of the algorithm to

sample size demonstrates that the application of

a general set of rules to the gridding of multiple geo-

physical parameters may not be appropriate. More

meaningful gridded statistical data can be generated

when a set of filtering criteria and gridding variables

unique to the science application and geophysical pa-

rameter of interest is developed. For different teams

to compare a given geophysical parameter in their

products to investigate similarities and differences, the

choices made in filtering the data must be clearly

stated. This will ensure that the observed spatial fea-

tures and trends are less due to introduced errors and

more to the actual space–time properties. In the next

section we demonstrate how this gridding algorithm

can be applied to any number of instruments for a

multisensor comparison that is independent of instru-

ment configuration.

5. Multisensor gridding application

In the final part of our study, we investigate the suit-

ability of using the space–time algorithm for a multi-

sensor comparison by calculating a gridded monthly

CTP average for four different polar-orbiting instru-

ments: MODIS, AVHRR,AIRS, and CALIOP (section

2). This part of the experiment is limited to a visual

comparison as the objective is to evaluate the effec-

tiveness of the algorithm for global comparisons. In a

future paper we will evaluate the strengths and weak-

nesses of various cloud retrieval algorithms and differ-

ent polar-orbiting instruments on a uniform grid.

A weighted average of CTP [Eq. (1)] is calculated for

1–31 August 2009 on a 18 3 18 equal-angle grid. Test 4

was applied to remove grid cells with too few observa-

tions. The results in Fig. 6 represent themonthly average

of daytime high cloud CTP retrievals from near-nadir

observations (viewing angle # 328).
The intercomparison of cloud height retrievals from

different instruments has been the subject of a number

of studies (e.g., Wylie et al. 2005, Weisz et al. 2007). The

results displayed here reflect the widely known capa-

bilities of the different instruments. The infrared instru-

ment, AIRS, appears to be detecting more high clouds

FIG. 5. Sensitivity to gridcell size. Weighted time average of daytime high CTP for 1–31 Aug 2009 with threshold 4

applied (Table 1) and viewing angles # 328 on a (a) 18 3 18 grid and (b) 28 3 28 grid. Results are zoomed in to the

Pacific (308N, 1808)–(308S, 808W) in (c) 18 3 18 grid and (d) 28 3 28 grid.
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than MODIS Collection 5 especially in the tropics.

AVHRR/PATMOS-x replicates the AIRS tropical high

cloud results but agrees more with MODIS in the mid-

latitudes and polar regions. Discrepancies betweenAIRS

and MODIS CTP averages depend not only on the

spectral region sampled but also on the spatial resolu-

tion of each instrument. The hyperspectral capabilities

of AIRS make it possible to capture small vertical fea-

tures, whereas the high spatial capabilities of MODIS

make it possible to detect horizontal variability. The

lidar instrument, CALIOP, is very sensitive to the de-

tection of optically thin clouds, but its coverage is limited

to a small number of grid cells in one month. CALIOP,

however, offers opportunities for validation of cloud re-

sults, despite its limited horizontal range.

These results illustrate the ease with which the uni-

form space–time gridding algorithm can be applied to

any number of instruments. A full gridded cloud retrieval

comparison of different instrument algorithms will follow

in future research.

6. Conclusions

The space–time gridding algorithm proposed in this

paper provides a method for combining and comparing

data from different space-based instruments on a com-

mon geographic coordinate system that is user defined.

Gridding requirements for a geophysical parameter

strongly depend on the research questions at hand.

Static generalized gridded data products, such as level 3,

from different sources may be incompatible and limited

in scope. Moreover, in the quest for broad application,

the creators of level 3 products may oversimplify geo-

physical data descriptions. With more than three de-

cades of satellite data, the need for data combination

and continuity on a large scale has never been greater.

The algorithm proposed here breaks the problem of

gridding into two components: spatial data resampling

and subsequently temporal data reduction. The require-

ments for both components are user defined—from the

geophysical data filters to the grid size, type of statistic,

and length of time. The implementation of a gridding

algorithm, as opposed to using static gridded products for

analysis, has the advantage that any geophysical property

of interest at any level of processing can be gridded with

research-specific statistics in mind. This greatly simplifies

the gridding problem since key data reduction steps are

left up to the user to define. Additionally, this provides

the user with the flexibility to treat each geophysical pa-

rameter differently.

FIG. 6. Space–time griddedmonthly averages of high CTP for four instruments: (a) operationalMODIS (MYD06),

(b) PATMOS-xAVHRR, (c) operationalAIRS level 2, and (d) CALIOP. The space–time gridding algorithm allows

multisensor comparisons. The results represent weighted time average of daytime high CTP for 1–31 Aug 2009 with

threshold 4 (Table 1) applied and viewing angles # 328 on a 18 3 18 grid.
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In addition to the dynamic nature of the algorithm,

another novel characteristic is that all measurements

retained by the filtering criteria are resampled during

phase one. In other words, there is no spatial data re-

duction. Each grid cell contains a set of measurements

from which a daily statistic can be calculated. This is an

important consideration: the only type of data reduction

in the space–time algorithm is statistically based. Tra-

ditionally, daily gridded products are created by select-

ing a single value per grid cell, whether it is based on

a nearest neighbor or random location requirement.

However, with such an approach the daily products

serve a physical data reduction purpose. Statistical de-

scription is achieved only when daily grids are aggre-

gated over time. This space–time algorithm, on the other

hand, allows statistical description on a daily basis. The

advantage of this approach is illustrated with the cal-

culation of a weighted average. A cloud-top pressure

(CTP) average is calculated per grid cell per day and

weighed by the percentage cloudiness (number of

cloudy versus clear measurements per grid cell). As

a result, the time-aggregate average is dominated by the

CTP average from predominantly cloudy days. This

serves to reduce statistical uncertainty in the final out-

put. Far from being prescriptive, this serves to demon-

strate the scope of the space–time algorithm for the

calculation of compound statistics and error handling.

Four different threshold values for a minimum num-

ber of observations per grid cell are tested. We conclude

that a threshold that filters out those cells with fewer

than 3.5% (the lowest of a 1.5 standard deviation) of the

average number of observations per grid cell is rigorous

but not too aggressive to hinder daily global analysis.

Moreover it is instrument independent, which is an im-

portant consideration for multisensor comparisons.

The sensitivity of the space–time gridding algorithm is

investigated for gridding variables that affect sample

size, namely grid size, number of days, and viewing angle

restrictions. This is approach is illustrated by means

of an algorithm application using Aqua/MODIS cloud

retrievals (MYD06, collection 5). A time average is cal-

culated for daytime high cloud retrievals from near-

nadir observations for the period 1–31 August 2009.

Based on the results discussed in section 4, a number of

conclusions are reached. Regional features in the CTP

average are mostly artifacts of the cloud distribution

on single days rather than irregular orbital sampling.

Thus, any number of days (ndays) can be aggregated for

calculation of a time statistic. This is demonstrated

by comparing a time statistic calculated from a typical

Gregorian month definition (31 days) with one calcu-

lated from 32 days (coinciding with two Aqua platform

repeat cycles). The 31-day average did not introduce

obvious artificial features despite strong orbital sam-

pling differences.

The sensitivity of the algorithm to sample size dem-

onstrates that the application of a general set of rules to

the gridding ofmultiple geophysical parameters may not

be appropriate. We argue that more meaningful gridded

statistical data can be generated when a set of filtering

criteria (e.g., viewing angle limits) and gridding vari-

ables (e.g., gsize and ndays) are developed that are

unique to the science application and geophysical pa-

rameter at hand. This will ensure that the observed

spatial features and trends are due less to introduced

errors and more to the physical space–time properties.

Rather than producing static L3 gridded products, the

space–time algorithm described here provides analysis

flexibility with an opportunity for data exploration in

grid space. This could enhance the interpretation and

understanding of observed patterns and trends. Finally,

the conceptual and computational ease of the algorithm

lends it transparency to dynamically create gridded geo-

physical properties that are tailored to specific research

needs from any suite of space-based measurements.
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